Impacts of Questionable Science and Poor Process:
Why Obfuscating Federal Process Combined with Questionable Data is Preventing our Local Community from Solving a Serious Flood Problem

Chal Martin, P.E.
City of Burlington
Public Works Director

May 24, 2007
Direct Gage Readings for Annual Peak Flows
Skagit River Near Concrete – 81 Years

[Graph showing annual peak flows from 1898 to 2003]
Winter Unregulated Annual Peak Flows
Skagit River Near Concrete
QUESTION

• What is the correct data to input into the flood frequency analysis?
• Answer to this question turns on the interpretation of the work conducted by James E. Stewart

(thanks to Mr. Larry Kunzler for the slides that follow)
WHO WAS JAMES E. STEWART?

- Mr. Stewart was a hydrologist employed by the USGS Tacoma District Office sometime before 1918.
- His official title was “Assistant Engineer”.
- He authored the first “report” on the Skagit River in 1918 and sometime thereafter was transferred to Hawaii.
Report dealt with 1897, 1909 and 1917 flood events.

Determined these flood events were 10 year events.

1897 flood 3 ft higher than 1909 at Concrete.

1909 flood 1.6 ft higher than 1917 and .6 ft. higher than 1897 flood at Sedro-Woolley.
STEWART 1918 REPORT

<table>
<thead>
<tr>
<th>YEAR</th>
<th>CONCRETE[1]</th>
<th>SEDRO-WOOLLEY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1897</td>
<td>205,000 cfs</td>
<td>171,000 cfs</td>
</tr>
<tr>
<td>1909</td>
<td>185,000 cfs</td>
<td>169,000 cfs</td>
</tr>
<tr>
<td>1917</td>
<td>175,000 cfs</td>
<td>157,000 cfs</td>
</tr>
</tbody>
</table>

Stewart Report Appendix (1918)

The volumes expressed are “peak discharges”.

[1] The Dalles
Stewart’s 1918 Estimates of the Historic Unrecorded Floods
At Concrete
Stewart’s 1918 Estimates of the Historic Unrecorded Floods
At Sedro-Woolley
At Hamilton the FN records a notation taken from a local newspaper article which stated that the 1909 flood was 4” higher than the 1897 flood. The HWN came very close to documenting this having the difference between the 1909 and 1897 flood as 3.6 inches with the 1909 flood being the higher of the two. The HWN further state that the 1921 flood was 3.6 inches higher than the 1909 flood and 7.2 inches higher than the 1897 flood.

Although probably accurate based on local newspaper accounts of the 1921 flood it would appear to contradict all his other estimates.

These and many other discrepancies between the FN and the HWN have never been addressed by USGS, the Corps or FEMA.
Comparison of 1918 and 1923 Flood Flows Concrete WA.

<table>
<thead>
<tr>
<th>Flood year</th>
<th>1918 Report</th>
<th>1923 Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>1897</td>
<td>205,000 cfs</td>
<td>275,000 cfs</td>
</tr>
<tr>
<td>1909</td>
<td>185,000 cfs</td>
<td>260,000 cfs</td>
</tr>
<tr>
<td>1917</td>
<td>175,000 cfs</td>
<td>220,000 cfs</td>
</tr>
</tbody>
</table>

- The first major **red flag** established for the 1923 report is the major difference in flood flows “estimated” at Concrete.
- The differences are never addressed by Stewart or USGS, Corps or FEMA.
- Major differences in peak discharge. Which one is nearly correct?
Stewart’s 1923 Estimates of the Historic Unrecorded Floods
At Concrete

![Graph showing flood estimates over time from 1898 to 2003.](image-url)
Stewart’s 1918 Estimates of the Historic Unrecorded Floods
At Concrete

Flow: 0, 50,000, 100,000, 150,000, 200,000, 250,000, 300,000
Stewart’s 1923 Estimates of the Historic Unrecorded Floods
At Sedro-Woolley
Stewart’s 1918 Estimates of the Historic Unrecorded Floods
At Sedro-Woolley
Stewart Report Questioned by Skagit and Corps of Engineers

One year after the submission of the Stewart Report at a public hearing in November 1924, Colonel Barden, Corps of Engineers, stated the following:

“I would like to emphasize the point that Mr. Knapp brought out in his paper, that before any really scientific plan can be prepared for the protection of this valley from floods, it is necessary to have more authoritative information than we now have as to the amount of water carried by the river in time of floods. . . . The information that was collected by Mr. Stewart and given in his report to the committee was excellent so far as the data that he had to work upon permitted, but that data was necessarily more or less inaccurate.” (Source: Public Hearing Transcript, Corps of Engineers, November, 1924)

Mr. Knapp was the Skagit County Engineer who worked closely with Mr. Stewart.
Stewart’s 1923 Estimates of the Historic Unrecorded Floods
At Sedro-Woolley
Stewart’s 1918 Estimates of the Historic Unrecorded Floods
At Concrete
Stewart’s 1918 Estimates of the Historic Unrecorded Floods At Sedro-Woolley
Winter Unregulated Annual Peak Flows Skagit River Near Concrete: Corps of Engineers Data Set
Winter Unregulated Annual Peak Flows Skagit River Near Concrete: PI Engineering Data Set
Winter Unregulated Annual Peak Flows Skagit River Near Concrete w/ Adjusted Sedro-Woolley Historic Estimates
Winter Unregulated Annual Peak Flows Skagit River Near Concrete: Corps of Engineers Data Set

100 Year = 280,200 cfs
Winter Unregulated Annual Peak Flows Skagit River Near Concrete: PI Engineering Data Set

100 Year = 246,300 cfs
Winter Unregulated Annual Peak Flows Skagit River Near Concrete: PI Engineering Data Set w/ Sedro Woolley Historic Peaks

100 Year = 245,900 cfs
Winter Unregulated Annual Peak Flows Skagit River Near Concrete w/ Adjusted Sedro-Woolley Historic Estimates

Expected Moments Algorithm 100 Year Range = 240,000 – 250,000 cfs
ISSUE

• What is the effect of the Corps of Engineers data set, compared to the PI Engineering data set?
Winter Unregulated Annual Peak Flows Skagit River Near Concrete: Corps of Engineers Data Set

100 Year = 280,200 cfs
Winter Unregulated Annual Peak Flows Skagit River Near Concrete: PI Engineering Data Set

100 Year = 246,300 cfs
FEMA 100-year Flood Hydrographs at Sedro Woolley (with existing flood storage)

- **Corps Hydrograph with Stewart Flows**
 - Flow: 234,800 cfs
 - Storage: 237,300 ac-ft

- **PI Engineering hydrograph with HEC-RAS modeled flows for Stewart high water marks**
 - Flow: 196,300 cfs
 - Storage: 57,100 ac-ft

- **Levee System Capacity**
FEMA 100-year Flood Hydrographs at Sedro Woolley (with existing flood storage)

FEMA 100-year Flood

Flow (cfs)

Corps Hydrograph with Stewart Flows

PI Engineering hydrograph with HEC-RAS modeled flows for Stewart high water marks

Levee System Capacity

Oct 2003 Flood of Record
Comments on Hydrographs

• PI Engineering’s analysis is not a lowball effort: it is conservative and results in a far worse flood than any flood ever experienced in the lifetime of anyone in the valley

• COE flood: exceeds levee capacity for more than 2 full days

• We are concerned that the theoretical 100-year flood being generated by the Corps not only results in much higher base flood elevations in FEMA’s program, but is so large that it leaves no practical solution

• In particular, we are concerned that the Corps hydrologic analysis precludes additional, obviously needed upstream flood storage because according to the Corps analysis, additional storage would be overwhelmed by the magnitude of the theoretical event
WHAT ABOUT FLOOD STORAGE?
• Neither Ross nor Upper Baker provide enough storage to handle their own basins during a Skagit 100-year flood event.

• Of the two, flood storage in the Baker system is particularly inadequate.
Peak Flow Correlation (COE)

Regulated Skagit River Peak Flow @ Concrete (cfs)

Unregulated Peak Flow (cfs)

- Ross - Historic (999 sq mi)
Peak Flow Correlation (PIE Adjusted vs. COE)

- Baker - Synthetic (297 sq mi)
- Ross - Synthetic (999 sq mi)
- Baker - Historic (297 sq mi)
- Ross - Historic (999 sq mi)
- (COE) Baker - Synthetic (297 sq mi)
- (COE) Ross - Synthetic (999 sq mi)
Peak Flow Correlation (PIE Adjusted and Accepted by COE)

- Baker - Synthetic (297 sq mi)
- Ross - Synthetic (999 sq mi)
- Baker - Historic (297 sq mi)
- Ross - Historic (999 sq mi)
GIVEN THIS NEW INFORMATION, THE GOVERNMENT WILL REQUIRE MORE FLOOD STORAGE, RIGHT?
– wrong
HOW IS THAT?

- Puget Sound Energy could operate the Baker dams for additional flood control but has stated it is too expensive and carries too much liability (think about that for a second).
- FERC could require more flood storage but has deferred to the Corps.
- The Corps is analyzing additional flood storage in the context of its General Investigation (GI) study.
- The General Investigation study shows that any additional flood storage in the Baker system would be overwhelmed by the magnitude of its theoretical 100-year flood; therefore, the GI process will, by definition, preclude additional Baker flood storage.
- The Corps’ work product which is precluding additional flood storage in the Baker system is overestimated because it is based on the historic unrecorded flood estimates provided by the USGS.
- The USGS has stated the Corps has independent authority to modify its data, including the historic unrecorded flood estimates.
- The Corps has stated it will not modify the USGS historic unrecorded flood estimates, as it views the USGS to be the expert (although the Corps could simply use the Sedro-Woolley data points instead, which have equal weight with the USGS).
- The theoretical 100-year flood that the Corps has developed is being used to produce the new flood elevation maps for FEMA.
- The FEMA flood elevation maps will be higher than otherwise because the Corps GI process is precluding additional flood storage in the Baker system.
What does all this mean?

1. The historic unrecorded flood events (see red bars) are overestimated
Winter Unregulated Annual Peak Flows Skagit River Near Concrete: Corps of Engineers Data Set

100 Year = 280,200 cfs
Winter Unregulated Annual Peak Flows Skagit River Near Concrete: PI Engineering Data Set w/ Sedro Woolley Historic Peaks

100 Year = 245,900 cfs
What does all this mean?

2. This overestimation skews the hydrology and hydraulic model.
FEMA 100-year Flood Hydrographs at Sedro Woolley (with existing flood storage)

- **Corps Hydrograph with Stewart Flows**
 - 234,800 cfs
 - 237,300 ac-ft

- **PI Engineering hydrograph with HEC-RAS modeled flows for Stewart high water marks**
 - 196,300 cfs
 - 57,100 ac-ft

- Levee System Capacity

Oct 2003 Flood of Record
What does all this mean?

3. Too much theoretical water paradoxically triggers the Corps process to de-select additional Baker storage as a flood control option, thereby making the problem even worse and further reducing any reasonable chance of a basin-wide flood project
I-5 Bridge over College Way

NAVD 1988 Ground Elev. 29.8 ft., Flood Elevation 40.5 ft.
College Way block between Riverside Drive and Urban Avenue

NAVD 1988 Ground Elev. 29.8 ft., Flood Elevation 40.5 ft.
Approx. 11 feet above ground

College Way at Riverside Drive and Urban Avenue

NAVD 1988 Ground Elev. 29.8 ft., Flood Elevation 40.5 ft.
College Way at Riverside Drive

NAVD 1988 Ground Elev. 29.8 ft., Flood Elevation 40.5 ft.

Approx. 11 feet above ground
Approx. 13 feet above ground

Behind Ace Hardware

NAVD 1988 Ground Elev. 27.8 ft., Flood Elevation 40.5 ft.
Fairhaven & Burlington Boulevard
NAVD 1988 Ground Elev. 34.3 ft., Flood Elevation 37.5 ft.
Fairhaven & Burlington Boulevard

NAVD 1988 Ground Elev. 37.8 ft., Flood Elevation 42 ft.

Approx. 4 feet, 2.4 inches above ground
Wendy’s (Burlington Blvd. near Pease Rd. in front of Kmart)

NAVD 1988 Ground Elev. 35.3 ft., Flood Elevation 41.5 ft.

Approx. 6 feet, 2.4 inches above ground
Wendy’s (Burlington Blvd. near Pease Rd. in front of Kmart)

NAVD 1988 Ground Elev. 34.3 ft., Flood Elevation 37.5 ft.

Approx. 6.2 feet above ground
Finally . . .

We think our information and approach is correct. You can be the judge.

We are hopeful the strength of our technical analysis, which we believe is conservative and responsible, will convince Federal authorities and avoid the cascade of bad outcomes described here.

But it is a difficult uphill struggle.
Don Gordon
CEO
Villaorba Group
WATER
We’re blessed with it!

Challenges

• How to measure it
• How to share it
• How to keep from standing in it

“Send the flood”
IMAGINE OUR COMMUNITY

Not the next one or two years

Imagine us in next 20 years

2027
• Firefighters and their equipment
• Police officers, Courts, Judges, Juries
• Roads – Streets – Traffic Control
• Parks and Social Services
• Hospitals and Public Health Service
• Dike Districts and Dike maintenance
• Cemeteries Districts
• Port Districts
• Deputy Sheriffs – Jails – rescue help
• Teachers and books and schools
• And so much more - - -
How will we pay for it?

- Property tax
- Sales tax
- Fees for services
Take an imaginary trip with me

We need to
Attend Four Meetings
ABC Investors
Anywhere USA

Board of Directors Meeting
Agenda

1. Minutes from last meeting
2. Salary raise to secretaries
3. Investments in Skagit County, WA.
ABC Investors
Anywhere USA

About Skagit County

PRO
- Beautiful
- Growing
- Prosperous
- Skilled work force

CON
- Flood elevations ?
- Floodway ???
- Property values ?

uncertainty
“U and Me”
Local Business

Discussion over lunch

Buy the old meeting hall and remodel?

Rent it out for a fair price?
Meeting #2

General discussion

YOU

• How much will it cost to buy?
• How much to remodel?

ME

• Can we get the permits to do it?
• Can we ever sell it?
• What will the new elevations mean?
Big or Little Bank
Local Branch
Board of Directors Meeting
Agenda
1. Minutes from last meeting
2. Salary raise to secretaries?
3. Approve “U and Me” loan application?
considerations

• Collateral? good
• Location good
• What will this FEMA decision mean ???
• Enough flood insurance avail ???
• Federal and State regulators ???
• Better places to lend money ???

uncertainty
What will all this uncertainty do to property values if people are hesitant to invest?
A Dampening, Smothering effect.
District Commissioners meeting

Any and All

Meeting # 4

Hospital District

School District

Superior/ District Court

City Council

County Fair Board

County Commissioner

Parks and Rec.

Port Commission

Sheriff - Jail

Health Department

Senior Services

Police Department

Etc., Etc., Etc., - - - -
Commissioners Budget Discussion
(before new elevations)

Income Forecast

• Income from new construction
• Income on present valuations
• Income from sales tax portion
• Income from fees and services

Expense Forecast

• Almost every cost
Commissioners Budget Discussion
(after proposed elevations)

Income Forecast
- Income from new construction
- Income on present valuations
- Income from sales tax portion
- Income from fees and services

Expense Forecast
- Almost every cost
District Commissioners meeting

Meeting # 4

TALK TO FEMA

LEAD THE WAY

UNITE COMMUNITY
Be certain that

• The process is “Open”

• The right “Information is used”
Business Community will fight for survival

Income
Costs
Net
OUR OPPORTUNITY
• **Unite** as a community, public and private. Put the pieces together right.
• **Unite** as a community, public and private.
• Insist that the **process be “OPEN”** and transparent.
• **Unite** as a community, public and private.
• Insist that the **process** be “**OPEN**” and transparent.
• See that all **relevant data** be included.
• Unite as a community, public and private.
• Insist that the process be “OPEN” and transparent.
• See that all relevant data be included.
• Insist that the local community be included.
• Unite as a community, public and private.
• Insist that the process be “OPEN” and transparent.
• See that all relevant data be included.
• Insist that the local community be included.
• Petition every official elected to any City/County/District/State/Federal Office demand an “Open and Inclusive Review”.
“The flood elevations proposed are correct we will slowly leave this valley by natural attrition, whether by actual flood or merely the threat of it.”
"As we strongly suggest, the elevations \textit{are incorrect} and imposed regardless of the data, this wonderful and unique American community will \textit{needlessly} wither and become a ghost of what it has been and can be".
IF FEMA WON’T LISTEN

AMERICA

WILL

“IT’S THE PROCESS AND THE DATA”