

ALASKA • CALIFORNIA • COLORADO • FLORIDA • MISSOURI • OREGON • WASHINGTON

400 N. 34TH STREET, SUITE 100 P.O. BOX 300303 SEATTLE, WASHINGTON 98103 206•632•8020 FAX 206•695•6777

TRANSMITTAL

То	Mr. Daniel E. Johnson	DATE	June 18, 2010
Company	U.S. Army Corps of Engineers, Seattle District	PHONE	
Address	P.O. Box 3755	FAX	
	Seattle, Washington 98134-2385	JOB NO.	21-1-21199-002
SUBJECT	Final Geotechnical and Hydrogeologic Report, USACE Task Order No. 002 for Contract No. W912DW-09-D-1005		

THE FOLLOWING ITEMS ARE TRANSMITTED:

DATE	NO. COPIES	DESCRIPTION	
06/18/2010	ORIGINAL + 4 Copies Bound; PDF on CD	SKAGIT RIVER LEVEE GENERAL INVESTIGATION, GEOTECHNICAL AND HYDROGEOLOGIC DATA AND LIQUEFACTION EVALUATION REPORT, SKAGIT COUNTY, WASHINGTON	
	n nagavagt 🗍 T	lan your anneaval	

Per your request	For your approval	For your information	For your files
For your review	For your action	Return with comments	Other

By: Brian S. Reznick, P.E.

c: _____

Title: Principal Engineer

Transmittal-USACE.doc/wp/S

Skagit River Levee General Investigation Geotechnical and Hydrogeologic Data and Liquefaction Evaluation Report Skagit County, Washington

June 18, 2010

Submitted To: Mr. Daniel E. Johnson U.S. Army Corps of Engineers, Seattle District P.O. Box 3755 Seattle, WA 98134-2385

> By: Shannon & Wilson, Inc. 400 N 34th Street, Suite 100 Seattle, Washington 98103

> > 21-1-21199-002

TABLE OF CONTENTS

Page

1.0	INTRODUCTION
2.0	SITE AND SCOPE DESCRIPTION
3.0	PREVIOUS STUDY
4.0	SUBSURFACE EXPLORATIONS24.1Drilling Methods24.2Soil Testing and Sampling34.2.1Split-spoon Sampling34.2.2Thin-walled Tube Sampling44.3Field Soil Classification54.4Observation Well Installation5
5.0	GEOLOGY55.1Geologic Setting
6.0	HYDROGEOLOGIC STUDIES.86.1Observation Well Development.6.2In Situ Hydraulic Conductivity Testing.96.2.16.2.1Slug Testing – Landward Borings96.2.26.2.3Falling Head Percolation Testing – Levee Borings106.2.4Falling Head Percolation Test Results11
7.0	GEOTECHNICAL LABORATORY TESTING127.1Soil Index Tests137.1.1Visual Classification137.1.2Water Content Determination137.1.3Atterberg Limits Tests137.1.4Grain Size Distribution Analyses13

TABLE OF CONTENTS (cont.)

SHANNON & WILSON, INC.

Page

	7.2	Soil Str	ength Tests	
		7.2.1	One-dimensional Consolidation Tests	14
		7.2.2	Consolidated-undrained Triaxial Compression Test	14
	7.3	Hydrau	lic Conductivity Testing	15
		7.3.1	Methodology	15
		7.3.2	Results	
8.0	RECO	MMENI	DED SOIL PROPERTIES	16
9.0	LIQUI	EFACTI	ON	17
	9.1	Analysi	is Approach	
	9.1 9.2	Analysi	is Approach I Motions	17
		Analysi Ground	is Approach I Motions	
10.0	9.2 9.3	Analysi Ground Results	l Motions	

FIGURES

1	Vicin	ity M	ap			
•	a	1 -		. •	- 1	

2 Site and Exploration Plan (2 sheets)

APPENDICES

- A Boring Logs
- B Hydrogeologic Field Test Results
- C Geotechnical Laboratory Test Results
- D Liquefaction Factor of Safety Analyses
- E Important Information About Your Geotechnical/Environmental Report

SKAGIT RIVER LEVEE GENERAL INVESTIGATION GEOTECHNICAL AND HYDROGEOLOGIC DATA AND LIQUEFACTION EVALUATION REPORT SKAGIT COUNTY, WASHINGTON

1.0 INTRODUCTION

The Skagit River Levee General Investigation study is part of an effort by the Seattle District U.S. Army Corps of Engineers (USACE) to identify available levee information and to research different measures for flood reduction along the Skagit River levee alignments. This geotechnical and hydrogeologic report presents the results of our recent field exploration program, field testing, laboratory testing, and liquefaction evaluation for the study.

Notice to proceed with this study was provided by the USACE under Task Order No. 002. Our services were performed in general accordance with Contract No. W912DW-09-D-1005 and the corresponding Statement of Work for Task 4.

2.0 SITE AND SCOPE DESCRIPTION

Approximately 100 miles of the Skagit River flow through Skagit County, splitting into two distributaries, the North Fork Skagit River and South Fork Skagit River, before discharging into Skagit Bay. Major cities along the river include Sedro-Woolley, Burlington, and Mount Vernon. The community of Fir Island is located between the two distributaries. Most of the levees along the Skagit River are located downstream of Sedro-Woolley, occupying the lower 30 miles of river. Levee maintenance is divided between municipalities and dike districts along this stretch of river. Figure 1 shows the project vicinity map.

Our scope of services for this part of the study were to evaluate the hydrogeologic and geotechnical properties of the existing levee and underlying soil at eight levee locations near Mount Vernon and Fir Island. The eight locations were selected to evaluate subsurface conditions at known seepage areas along the levee and are based on several conversations with the USACE; Skagit County; and Dike Districts 1, 3, 17, and 22. Our services included:

- Coordinating, drilling, and sampling 16 borings to evaluate subsurface soil and groundwater conditions at eight levee locations.
- Installing monitoring wells and dataloggers in the borings to measure and record groundwater levels.

- Reviewing field logs and soil samples.
- Performing hydraulic conductivity testing in the wells.
- Performing laboratory index, strength, consolidation, and hydraulic conductivity tests on select soil samples.
- Performing liquefaction potential calculations.
- Producing a report to present our findings.

3.0 PREVIOUS STUDY

Shannon & Wilson recently conducted a review of the available levee and geotechnical and geologic site information collected by the Seattle District USACE in the study area. Our findings are summarized in a report titled, "Draft General Investigation Report, Skagit River Basin Levees, Skagit County," dated August 26, 2009. The USACE authorized the study as a first step in identifying construction opportunities for flood reduction along the levee alignments. The information gathered for the report was used in part to select the boring locations for this study.

4.0 SUBSURFACE EXPLORATIONS

We explored the subsurface conditions at eight levee locations by drilling and sampling 16 paired soil borings. Each boring pair consists of one boring drilled on the levee to about 60 to 65 feet below ground surface (bgs) and one boring drilled on the landward side of the levee to about 40 to 50 feet bgs. A groundwater observation well was installed in each boring. Boring names are designated by dike district, location number within that district, and the boring position (either levee or landward). For example, "DD1-1 Levee" was drilled in Dike District 1, Location 1, on the levee. The approximate boring locations are shown in Figure 2 and based on global positioning system (GPS) data. The GPS equipment used has an accuracy of approximately 3 meters. The boring logs are included in Appendix A.

4.1 Drilling Methods

Shannon & Wilson subcontracted with Holocene Drilling, Inc. to drill and sample the soil borings using a Mobile B-61 truck-mounted drill rig and mud rotary drilling methods. Drilling took place between October 8 and 23, 2009. Water mixed with Revert (an organic polymer thickening agent) was pumped from a tank at the ground surface, down the center of the drill rods and out a tri-cone bit, up the annulus of the hole, and back into the tank. The circulation of drilling fluid removes the drill cuttings from the hole and carries them to the surface where they

are screened and removed from the recirculating mud. The Revert helps to stabilize the borehole, reducing caving or collapsing during drilling and sampling.

4.2 Soil Testing and Sampling

In general, soil testing and sampling was conducted at 2.5-foot intervals to 20 feet bgs and 5-foot intervals thereafter. Samples were obtained by removing the drill rods, attaching a sampler to the end of the rods, and lowering the sampler to the bottom of the hole. A Shannon & Wilson representative visually classified the retrieved samples, compiled a field log of each boring, and returned the samples to our laboratory in Seattle, Washington. Sample depths and types are shown in the boring logs presented in Figures A-2 through A-17 in Appendix A.

4.2.1 Split-spoon Sampling

Granular and fine-grained disturbed soil samples were obtained by a split-spoon sampler in conjunction with the Standard Penetration Test (SPT) or non-standard penetration sampling. Each recovered soil sample was scraped with a soils knife to remove excess drilling fluid, classified for the boring logs, and sealed in a screw-top plastic jar to preserve moisture. The jars were stored in boxes and returned to our laboratory by our field representative for further analyses and testing.

SPTs were performed in general accordance with ASTM International (ASTM) Designation: D 1586, Standard Test Method for Penetration Test and Split-barrel Sampling of Soils (ASTM, 2009). The SPT consists of a 2-inch outside-diameter (O.D.), 1.375-inch insidediameter (I.D.), split-spoon sampler driven 18 inches into the bottom of the borehole with a 140-pound hammer free falling 30 inches. The number of blows required to cause the last 12 inches of penetration is termed the Standard Penetration Resistance (N-value). Generally, whenever 50 or more blows are required for 6 inches or less of penetration, the test is terminated and the number of blows and corresponding penetration recorded. The N-values are plotted on the boring logs presented in Appendix A. These values provide an empirical means by which to evaluate the relative density of granular soil and the relative consistency (stiffness) of cohesive soils. The relative density or consistency as it is related to the SPT N-value is shown in Figure A-1. The 2-inch-O.D. split spoon can collect sample volumes up to 26.7 cubic inches.

Non-standard penetration sampling consisted of a 3-inch O.D., 2.4-inch I.D. split-spoon sampler driven 18 inches into the bottom of the borehole with a 140-pound hammer free falling 30 inches. This sampling technique was used to obtain larger granular sample volumes for laboratory hydraulic conductivity testing. The 3-inch-O.D. split spoon can collect sample volumes up to 81.4 cubic inches. Similar to the SPT, the number of blows required to cause the last 12 inches of penetration was recorded and plotted on the boring logs presented in Appendix A.

The penetration resistance values recorded using the SPT are not the same as those recorded using the non-standard sampler. The specific energy imparted to the sample is a function of hammer type, hammer efficiency, hammer weight, hammer drop height, drill rod length and diameter, and sampler size. Published correction factors (Youd and Idriss, 1997) for hammer efficiency, overburden pressure, borehole diameter, rod length, and sampling method can be used to normalize the measured penetration resistances for both the SPT and non-standard sampler. The boring logs in Appendix A present the recorded penetration resistance values observed in the field at the time of drilling and have not been normalized. The word "nonstandard" is plotted next to the penetration resistance value where the 3-inch-O.D sampler was used.

4.2.2 Thin-walled Tube Sampling

At select locations, we obtained relatively undisturbed samples using a 36-inch-long, 3-inch O.D., thin-walled, steel tube sampler (Shelby tube). The direct-push sampling method was used in general accordance with ASTM Designation: D 1587, Standard Practice for Thinwalled Tube Geotechnical Sampling of Soils. In the direct-push method, the Shelby tube is connected to a sampling head that is attached to the drill rods. The tube is pushed by the hydraulic rams of the drill rig into the soil below the bottom of a drill hole and then retracted to retrieve the sample. Shelby tubes are generally used in soft to stiff, fine-grained soils, although occasionally they are used in stiffer soil.

The tube samples were removed from the drill stem, examined from the ends of the tube, and then carefully sealed using plastic lids and tape to preserve the moisture content. These samples were stored in an upright position and transported to the Shannon & Wilson laboratory by our field representative for further analyses and testing. Each tube sample was stored in an upright position, in a temperature- and humidity-controlled environment, in the laboratory. In the lab, each sample was pushed out of the tube in the same direction it entered the tube onto a continuously supported tray. The soil sample was classified and logged, then cut into appropriate lengths for additional testing. Each piece saved was triple-wrapped in plastic wrap to reduce moisture loss and marked for identification. The wrapped samples were stored in a humidity- and temperature-controlled environment until testing.

4.3 Field Soil Classification

Soil classification for this project was based on ASTM Designation: D 2488, Standard Recommended Practice for Description of Soils (Visual-Manual Procedure). The Unified Soil Classification System (USCS), as summarized in Figure A-1 of Appendix A, was used to classify the material encountered.

4.4 **Observation Well Installation**

Holocene Drilling, Inc. installed monitoring wells in the 16 soil borings. A Shannon & Wilson representative selected well depths based on soil and groundwater conditions and observed the well installation. Each well consists of a 2-inch-I.D., minimum 0.154-inch-thick, Schedule 40 polyvinyl chloride (PVC) casing that extends from the ground surface to a 10-foot-long PVC screen located at the bottom of the well. The well screen slots are 0.01 inch wide (No. 10 slot). Each casing section is 10 feet in length and threaded together at the joints. An end cap is threaded to the bottom of the slotted section. Excess casing is sawed off before installing the well. The screened portion of the well is backfilled with a filter pack consisting of 10-20 Colorado silica sand, extending 1 to 2 feet above the top of the well screen. Above and below the filter pack, the borehole is backfilled with bentonite. The top of each well is secured with a water- and vapor-tight, rubber-ringed locking cap. The wells are completed flush to grade with steel monuments. Specific as-built details for each well are included on the corresponding boring logs found in Appendix A.

Well screen locations were selected to estimate in situ permeability in the levee and foundation soil, and for long-term site-specific groundwater monitoring that could be compared with the gauged river elevations. In general, well screens were installed at depths ranging between 12 and 28 feet bgs. The well screens installed in borings on the levee were placed in the levee fill. The wells installed on the landward side of the levee were screened in relatively pervious alluvium that generally was encountered beneath 10 to 20 feet of less pervious overbank deposits.

5.0 GEOLOGY

5.1 Geologic Setting

The Skagit River flows from the Cascade Mountains to a broad lowland delta along the eastern margin of the Puget Lowland Basin. Pleistocene (approximately 2 million to 10,000 years ago)

glacial and Holocene (past 10,000 years) river processes have largely shaped topography and surface geology along the river.

Geologists generally agree that during the Pleistocene, continental ice sheets advanced from Canada at least six times. Thick glacial and nonglacial sediments were deposited during and between the repeated glacial advances across the Puget Lowland basin. During the Holocene, the Skagit River built a broad, delta alluvial plain from Blanchard Mountain to the north, Fidalgo Island to the west, and Milltown to the south. Delta deposits include interbedded channel deposits (Ha[cd]), gravelly channel deposits (Ha[g]), and overbank deposits (Ha[ob]). Near the river outlet, fine-grained sediment is deposited in the Skagit River estuary (He), an area influenced by tidal action. Within the last 100 years humans have modified the delta, including construction of flood control levees, built with local and imported fill (Hf).

5.2 Geologic Units

Geologic units were developed to group the complex sediment and soil types encountered in the project borings. The geologic unit descriptions are described herein and are shown on the boring logs presented in Figures A-2 through A-17 in Appendix A. Summary plots of laboratory grain size analyses are presented by geologic unit in Figures C-29 through C-33 in Appendix C.

5.2.1 Levee Fill (Hf)

The borings drilled on the levees encountered 9 to 17 feet of fill soil with variable properties. Most of the levee fill encountered in our borings consists of very loose to medium dense, silty, fine sand to fine sandy silt that is similar in composition to the native underlying overbank and channel deposits. The fill material is generally massive with scattered clayey pockets and a trace of organics. Based on the similarity in grain size distribution between the fill and underlying native undisturbed soils, we believe that most of the levee fill soil was locally derived. However, borings DD3-1 Levee, DD22-1 Levee, DD22-2 Levee, and DD17-1 Levee encountered medium dense, slightly clayey, gravelly, silty sand; stiff to very stiff, silty clay; and medium dense, slightly sandy gravel layers within the upper 5 to 7 feet of the levee. This mixture of gravel, clay, and sand may indicate that imported material was added to the levees at these locations. Iron-oxide staining within the fill soil provides local evidence of intermittent groundwater presence within the levee, either from rain or groundwater.

5.2.2 Channel Deposits (Ha[cd])

Under normal flow conditions, the Skagit River deposits silt, sand, and gravel within its banks. The channel deposits encountered in the borings consist of very loose to medium dense, trace to slightly gravelly, trace of silt to silty, fine to medium sand. The borings encountered channel deposit layers ranging from 4 to nearly 40 feet thick. Channel deposits generally underlie, and are interbedded with, overbank and gravelly channel deposits. Iron-oxide-stained layers indicate the presence of intermittent groundwater. Scattered wood and organic debris were encountered within these deposits.

5.2.3 Gravelly Channel Deposits (Ha[g])

During high flows, the Skagit River transports and deposits gravel within its banks. The gravel may be derived from local glacial deposits or transported downstream from the Cascade Mountains. Gravelly channel deposits encountered in the borings consist of loose to medium dense, trace to slightly silty, sandy gravel to gravelly sand. The borings encountered gravelly channel deposit layers ranging from 5 to about 25 feet thick. Iron-oxide-stained layers indicate the presence of intermittent groundwater. Scattered wood and organic fragments were encountered within these layers.

5.2.4 Overbank Deposits (Ha[ob])

Overbank sediment is deposited when the Skagit River floods beyond its bank, spreading sediment-laden water over the low-relief delta plain and depositing sediment in a low-energy environment. Overbank deposits are typically laminated, very loose to loose sand and soft to stiff silt with varying amounts of clay. The overbank deposits encountered in the borings range from about 5 to 17 feet thick and commonly overlie Ha(g) and Ha(cd). Iron-oxide-stained layers indicate the presence of intermittent groundwater. Borings encountered up to 2.5-foot-thick intact wood, and scattered wood and organic fragments.

5.2.5 Estuary Deposits (He)

The North Fork and South Fork Skagit Rivers drain into Skagit Bay where fresh river water mingles with the salt water of Puget Sound. The estuary deposits encountered in our borings consist of loose to medium dense, silty, fine to medium sand with trace amounts of clay. Through time, the fine-grained sediments deposited in a quiet estuary were gradually buried by coarser alluvial sediment as the river mouth moved forward into Skagit Bay. These deposits are distinguished from the other alluvial deposits by the presence of scattered to numerous shell fragments.

6.0 HYDROGEOLOGIC STUDIES

Following the completion of drilling and well installation, the observation wells were developed, tested, and monitored to provide hydrogeologic data for future analyses. The data loggers remain active and can be used for future services.

6.1 Observation Well Development

Each observation well was developed to remove sediment and drilling fluid from the casing and filter pack, and to improve the hydraulic connection between the well screen and the adjacent subsurface soils. Well development occurred between October 27 and November 4, 2009 taking around 2 to 4 hours per well, depending on site conditions. To develop each well, a Shannon & Wilson representative surged and pumped groundwater in the well with a check valve-type inertial pump (Waterra). The Waterra pump is connected to clean, high-density polyethylene (HDPE) tubing with a plastic check valve. A surge block is attached to the check valve to facilitate the movement of water back and forth through the well screen during the development process. Between approximately 50 and 70 gallons were purged at each of the landward well locations. At the time of development, levee wells did not have groundwater present. Therefore, approximately 20 gallons of tap water were added to each of the levee wells to flush drilling fluid out of the filter pack. The added water was then surged and pumped in the same method as the groundwater well development on the landward side borings. Between 8 and 16 gallons were removed from each of the levee wells. Development continued until the field representative did not observe sediment in the discharge water.

Additional well development occurred in the levee wells between February 22 and March 10, 2010. The additional well development was performed after Shannon & Wilson observed that the in situ hydraulic conductivity test results for the levee fill were lower than that which would be expected based on soil classification and grain size distributions. The discrepancy was attributed to the drilling mud (Revert), which did not break down in zones above the water table. The Revert remained in the soil surrounding the wells, reducing the hydraulic connection between the wells and the surrounding formation. A dilute bleach solution was used to break down the drilling fluid additive in accordance with the Revert manufacturer's recommendations. Dilute bleach water was left in the wells overnight (once per levee well) to allow the bleach solution to permeate the formation and break down the Revert mud that had infiltrated into the

formation. Next, each levee well was redeveloped four additional times by adding bleach solution to the wells and then surging and pumping out the water. The process was repeated until the rate of water infiltrating into the well had increased to a consistent rate.

6.2 In Situ Hydraulic Conductivity Testing

A Shannon & Wilson representative performed either slug tests or falling-head percolation tests in levee and landward observation wells. The slug tests and falling-head percolation tests provide an in situ means of estimating the horizontal hydraulic conductivity of saturated sediments surrounding the screened zone of a well. Slug tests and falling-head percolation tests have a small radius of influence. As such, they do not provide data regarding large-scale aquifer properties, aquifer geometry, or boundary conditions affecting groundwater flow. Pumping tests are necessary to provide data related to large-sale aquifer properties.

6.2.1 Slug Testing – Landward Borings

Single-well field hydraulic conductivity tests (slug tests) were performed in borings drilled on the landward side of the levees where groundwater was present at the time of testing (Table B-1). Slug testing consists of rapidly raising or lowering the water level within an observation well and measuring the recovery of the water level over time to the static level. Raising the water level is achieved by lowering a slug (a sealed, sand-filled, PVC pipe) below the static water level to displace water within the well casing. This procedure is termed a "falling head test" because the water level falls with time back to the static level. Lowering the water level is achieved by quickly removing the slug from the well. This is termed a "rising head test" because the water level rises back to the static level after the slug is removed. A Shannon & Wilson representative performed multiple rising- and falling-head tests as part of the slug testing at each location.

Water level data during the slug tests were recorded using a Levellogger brand data logger/ pressure transducer system, which was placed at the bottom of the well.

6.2.2 Slug Test Results

The wells in the landward side borings are generally screened in native, undisturbed alluvium of channel and gravelly channel deposits. Plots for the slug tests performed at each well are included in Appendix B. Data obtained from the slug tests were plotted as semi-log plots of change in head (water-level change) versus time (Figures B-1 through B-16).

Regression lines fit to the slug test data in each plot were used to calculate hydraulic conductivity in general accordance with the Bouwer and Rice (1976 and 1989) methods.

The hydraulic conductivity slug test data results range from values of approximately 6×10^{-3} centimeters per second (cm/sec) to 2×10^{-2} cm/sec, as shown in Table B-1. During our in situ testing, groundwater level measurements were collected every 0.5 second, which may not fully capture rapid head changes during the early portion of tests made in rapidly permeable soil. Therefore, hydraulic conductivity results in Table B-1 may be on the low end of the soil conductivity range. In our experience, slug testing methods may not be sufficient to estimate hydraulic conductivity faster than approximately 2×10^{-2} cm/sec because rapid groundwater level recovery cannot be adequately measured. Because the results of the slug tests are within an order of magnitude of measurement limitations, some results could provide low estimates of the soil hydraulic conductivity. Designers should pick appropriate values for hydraulic conductivity, which may differ from test data range. Alternative testing methods, such as a pumping test, should be considered to estimate the hydraulic conductivity in the more pervious alluvium sands.

6.2.3 Falling Head Percolation Testing – Levee Borings

A Shannon & Wilson representative performed falling head percolation tests in eight observation wells located on the existing levees. Prior to testing, groundwater was not present in the wells. A falling-head percolation test consists of injecting water into the well until a steady state is achieved; i.e., the flow rate into the well and the water level inside the well reach constant values, followed by the cessation of water flow into the well and the subsequent "falling" of the water level as water percolates into the formation from the well. Evaluation of falling-head percolation test data provides an estimate of hydraulic conductivity for soils above the groundwater table.

To prepare for the falling-head percolation test, a constant water level was maintained above the well screen for approximately 30 minutes to saturate the soil in the surrounding formation. This saturation phase is performed so the test results can represent the saturated hydraulic conductivity. Water level data during the falling-head percolation tests were recorded using a Levellogger brand data logger/pressure transducer system, which was placed at the bottom of the well.

The original percolation tests performed on the levee wells were not considered representative of the soil conditions because the drilling fluid additive had not broken down, thus reducing the hydraulic conductivity of the soil surrounding the wells. As described previously,

the wells were redeveloped and then retested. The falling-head percolation tests performed in the Levee wells after redevelopment are included in Table B-2.

6.2.4 Falling Head Percolation Test Results

The wells in the levee borings are screened in levee fill materials. These soils generally have low permeability. Data obtained from the falling-head percolation tests were plotted as semi-log plots of change in head (water-level change) versus time (Figures B-17 through B-24). A regression line was fit to the test data for the plot. The falling-head percolation test data were analyzed using the Bouwer and Rice solution (Bouwer and Rice 1976 and 1989) to estimate the soil hydraulic conductivity.

Evaluation of falling head percolation test data for DD17-2 Levee indicated a hydraulic conductivity value of approximately 1×10^{-4} cm/sec, as shown in Table B-2. Based on our interpretation of the grain-size analysis and our review of soil samples for DD17-2 Levee, it is our opinion that the estimated hydraulic conductivity is representative of the levee soil near the well screen. The remaining seven levee boring percolation tests showed hydraulic conductivity ranging from approximately 3×10^{-7} to 8×10^{-6} cm/sec, which is in the lower range of the anticipated hydraulic conductivity values based on soil type, grain size distribution, and our experience with similar soil conditions. In our opinion, these values may not be representative of the soil type tested because of one or more conditions, including:

- Partial saturation resulting in multi-phase flow in the soil,
- Capillary effects,
- Complicated flow conditions during testing (flow is not radial, but a combination of radial and vertical),
- Local heterogeneities in the soil, and
- Plugging of pore space with drilling fluid.

Table B-2 and Figures B-17 through B-24 present the percolation test results.

6.3 Groundwater Monitoring

At each landward and levee boring location, a Levellogger brand data logger/pressure transducer system was placed at the bottom of the well screen and programmed to record the groundwater level hourly. In the landward borings, the data logger/pressure transducer records groundwater fluctuations in the well; in the levee borings the data logger/pressure transducer records groundwater fluctuations if groundwater enters the well screen in the levee. Data from the

months of November and December 2009 were downloaded on December 29, 2009, and are included in the plots B-25 through B-39. Boring DD17-2 Landward had a programming error and data was not recovered from the data logger/pressure transducer, and therefore excluded from this report.

After the data logger/pressure transducers were downloaded, the data logger/pressure transducers were reset and returned to the wells and are continuing to record groundwater information.

Plots of hourly groundwater readings are presented in Figures B-25 though B-39. The plots show that data logger/pressure transducers recorded seepage into the well screens at locations DD3-1 Levee, DD17-3 Levee, and DD22-2 Levee. In the landward borings, wells DD1-2 Landward, DD22-1 Landward, and DD22-2 Landward show intermittent negative depths to water, which we interpret to indicate that the water pressures in the screened zone of soils are above the ground surface. Groundwater levels above the ground surface can only be recorded in wells with the tightly sealed caps, otherwise leakage of water from the well will reduce the recorded pressure and the measurements may not be representative of the actual groundwater levels ranging from 2 feet above the top of the well casing to 15 feet below the top of the well casing.

7.0 GEOTECHNICAL LABORATORY TESTING

Geotechnical laboratory tests were performed on soil samples retrieved from the borings. The laboratory testing program included tests to classify soil samples and to provide data for future engineering studies.

Visual classification was performed on all retrieved samples. Index testing, including water content determinations, grain size distributions, and Atterberg Limits, were completed on select samples. Consolidated-undrained triaxial compression tests and one-dimensional consolidation soil strength tests were completed on select relatively undisturbed samples. Hydraulic conductivity tests were completed on relatively undisturbed samples and remolded disturbed samples.

The following sections describe the laboratory test procedures. The laboratory test results are presented as Table C-1 and Figures C-1 through C-54 in Appendix C.

7.1 Soil Index Tests

7.1.1 Visual Classification

Soil samples retrieved from the borings were visually classified in the laboratory using a system based on ASTM 2487, Standard Test Method for Classification of Soil for Engineering Purposes, and/or ASTM D 2488, Standard Recommended Practice for Description of Soils (Visual-Manual Procedure) (ASTM, 2009). These ASTM standards use the USCS and are described in Figure A-1. Visual classifications were checked using index testing as discussed in the next sections.

7.1.2 Water Content Determination

The water content of the retrieved samples was determined in general accordance with ASTM D 2216, Standard Method for Laboratory Determination of Water (Moisture) Content of Soil, Rock, and Soil-Aggregate Mixtures (ASTM, 2009). Comparison of the water content of a soil with its index properties can be useful in characterizing soil unit weight, consistency, compressibility, and strength. The water content is shown graphically on each of the boring logs presented in Appendix A.

7.1.3 Atterberg Limits Tests

Soil plasticity was determined by performing Atterberg Limits tests on select fine-grained samples. The tests were performed in general accordance with ASTM D 4318, Standard Test Method for Liquid Limit, Plastic Limit, and Plasticity Index of Soils (ASTM, 2009). The Atterberg Limits include Liquid Limit (LL), Plastic Limit (PL), and Plasticity Index (PI = LL - PL). They are generally used to assist in classifying soils, to indicate soil consistency (when compared with natural water content), and to provide correlation with soil properties including compressibility and strength. The results are shown graphically on the boring logs presented in Appendix A, and plotted on plasticity charts presented in Appendix C, Figures C-1 to C-11. The plasticity charts provide USCS group symbols, sample descriptions, and water contents. An Atterberg Limits plot for the overbank deposits geologic unit is also presented in Appendix C, Figure C-12.

7.1.4 Grain Size Distribution Analyses

Grain-size distribution analyses on select samples were performed in general accordance with ASTM D 422, Standard Test Method for Particle-Size Analysis of Soils (ASTM, 2009). The clay fraction of select samples was estimated by performing a hydrometer test. Grain size

distribution is used to assist in classifying soil and to provide correlation with soil properties, including permeability, liquefaction potential, capillary action, and sensitivity to moisture. Results of these analyses are presented as gradation curves in Appendix C, Figures C-13 to C-28. Each gradation sheet provides the USCS group symbol, the sample description, and water content. Grain-size plots are also presented by geologic unit in Appendix C, Figures C-29 to C-33.

7.2 Soil Strength Tests

7.2.1 One-dimensional Consolidation Tests

One-dimensional consolidation tests were performed on two relatively undisturbed samples in general accordance with ASTM D 2435, Standard Test Methods for One-Dimensional Consolidation Properties of Soils Using Incremental Loading (ASTM, 2009). The samples were incrementally loaded in a fixed-ring consolidometer. During each load increment, the change in sample height with time was recorded. Each load increment approximately doubled the previous load, to a preselected maximum consolidation pressure. The samples were inundated with distilled water after the first load increment. Drainage was allowed from both the top and bottom of the sample. An intermediate unload-reload cycle was performed when the consolidation pressure from a particular load increment was greater than the estimated in situ vertical stress for the sample. Upon reaching the maximum test load, the sample was unloaded in steps of about one-fourth the previous load.

A summary of the test results is presented in Appendix C, Figures C-34 and C-35. Specimen data is included in the data sheets.

7.2.2 Consolidated-undrained Triaxial Compression Test

Multi-staged consolidated-undrained triaxial compression tests with pore pressure measurements were performed on three relatively undisturbed samples in general accordance with ASTM D 4767, Test Method for Consolidated-Undrained Triaxial Compression Test on Cohesive Soil (ASTM, 2009). Prior to consolidation and shearing, each sample was saturated using back pressure. The degree of saturation was estimated by measuring the pore pressure coefficient B. A displacement-controlled testing machine was used to perform the test.

Each sample was sheared three times. Effective confining (or consolidating) pressures were generally applied as one-half the estimated in situ stress, the estimated in situ stress, and twice the estimated in situ stress. Initial consolidation of the sample was performed

incrementally by doubling the effective confining pressure until the desired value was reached. During each stage, the sample was strained to produce a peak shear stress ratio, or to achieve a maximum 5 percent strain, whichever occurred first. At that point, the sample was released from its deviator stress and re-consolidated to the next higher confining pressure before the next shearing stage. Ductile behavior was observed for each sample during each stage of the test.

A summary of the test results is presented in Appendix C, Figures C-36 to C-38. Specimen data are included in the data sheets.

7.3 Hydraulic Conductivity Testing

7.3.1 Methodology

Hydraulic conductivity testing was performed on nine relatively undisturbed samples and seven reconstituted disturbed samples in general accordance with ASTM D 5084, Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter (ASTM, 2009). Relatively undisturbed sample tests and reconstituted sample tests are identified in Table C-1. Samples for hydraulic conductivity testing were trimmed to a cylinder that is enclosed in a membrane and mounted in a permeameter cell. A porous stone is mounted on the base and top cap and the cell is filled with water and pressurized. The sample is saturated using back pressure and a small gradient through the sample to remove water carrying dissolved air and then consolidated to a preselected effective confining pressure. After the sample is saturated and consolidated, a preselected gradient is placed on the sample and the volume of flow into the base and out the top of the sample is recorded versus time.

7.3.2 Results

Results of the hydraulic conductivity tests for vertical hydraulic conductivity are presented in Figures C-39 through C-54 and summarized in Table C-1. Estimated vertical hydraulic conductivity ranges from about 4×10^{-7} to 1×10^{-3} cm/sec. Generally, the soils used in the hydraulic conductivity testing consist of silty sand to sandy silt overbank, estuarine, and channel deposits. Test results reflect heterogeneities, including organic casts and clasts, and fine-grained laminations, which influence the flow of water through the soil. In some cases, the hydraulic conductivity results from the testing are different than we would anticipate from the soil description.

We used the Hazen (1892), and Alyamini and Sen (1993), methods to estimate hydraulic conductivity based on grain size distribution analyses of the same or similar samples, and compared those results to our laboratory hydraulic conductivity testing. The grain size-based hydraulic conductivity estimates range from approximately $6x10^{-8}$ to $1x10^{-2}$ cm/sec, with most soil samples falling between $5x10^{-6}$ and $5x10^{-4}$ cm/sec. With the exception of samples DD3-1 Landward at 40 feet, DD17-2 Landward at 7.5 feet, and DD17-3 Landward at 5.9 feet, the laboratory hydraulic conductivity values from these three tests were similar. The estimated hydraulic conductivity values from these three tests were considerably slower than the values estimated from the grain size distribution, and may not be representative of the naturally deposited soil conditions. In the case of DD3-1 Landward, laboratory testing was done on a remolded, soil sample. The difference in estimated hydraulic conductivity, which can differ by more than an order of magnitude for fine-grained soil. Soil sample collection methods that disturb the soils, especially fine-grained soil, may also affect hydraulic conductivity testing results.

We recommend careful consideration of the soil information, including laboratory testing and soil descriptions, when selecting hydraulic conductivity values for engineering analyses, rather than relying solely on the hydraulic conductivity test results. The saturation of a soil can have a large influence on the hydraulic conductivity. Caution should also be taken when estimating hydraulic conductivity using grain size distribution, especially for fine-grained soil (Mitchell 1993). Mitchell states that grain size-based methods of estimating hydraulic conductivity are inadequate for clays, and describes numerous factors that affect hydraulic conductivity of fine-grained soil, including soil fabric at the micro, mini, and macro scales. The fabric is affected by depositional mode, compaction methods, water content during compaction, past depositional environmental changes, and numerous other factors that need to be considered.

8.0 RECOMMENDED SOIL PROPERTIES

Based on our in situ and laboratory test results, review of soil descriptions, and experience with similar soil units, we recommend the following range of hydraulic conductivity values be used for concept-level design and analyses:

Geologic Unit	Estimated Hydraulic Conductivity, k (cm/sec)
Levee fill and Overbank deposits	1x10 ⁻⁶ to 1x10 ⁻³
Channel deposits	1×10^{-3} to 1×10^{-2}
Gravelly channel deposits	1×10^{-3} to 1×10^{-1}

Note:

cm/sec = centimeters per second

Two consolidation and three strength tests were performed on overbank deposit samples collected from varying depths and at different levee locations. The overbank material tested was deposited during different life cycles of the river and likely had differing site conditions throughout its history. The following range of soil properties was interpolated based on our laboratory test results and could be used for concept-level design and analyses:

Geologic Unit	Compression Index, Cc	Recompression Index, Cr
Overbank deposits	0.28 to 0.43	0.019 to 0.023

Geologic Unit	Effective	Effective	Total	Total
	Friction	Cohesion	Friction	Cohesion
	(degrees)	(psf)	(degrees)	(psf)
Overbank deposits	33 to 37	0	15 to 24	0 to 600

Note:

psf = pounds per square foot

We recommend careful consideration of the soil information, including laboratory testing and soil descriptions, when selecting soil property values for engineering analyses.

9.0 LIQUEFACTION

9.1 Analysis Approach

We evaluated the liquefaction potential at the eight levee locations using the empirical procedures outlined in NCEER (Youd and Idriss, 1997), and the subsequent alternative procedures and updates by:

- Youd and others (2001)
- Seed and others (2003)
- Idriss and Boulanger (2006)

For an empirical liquefaction evaluation, the SPT blow count (N-value) is correlated to the liquefaction resistance of the soil (expressed as cyclic resistance ratio). The soil resistance is compared to the earthquake-induced loading (expressed as cyclic stress ratio), and a corresponding factor of safety (FS) against liquefaction is estimated.

The estimated fines content for a granular soil and the Atterberg Limits plasticity index for a cohesive soil were used as a basis for estimating the soil liquefaction resistance. Where laboratory tests were not available, we estimated the fines content based on nearby samples and the boring log soil descriptions. Fines content and Atterberg Limits tested for the 16 borings used in our evaluation are provided in Appendix C and shown graphically on the boring logs in Appendix A.

For the borings drilled landward of the levee, we assumed a groundwater elevation consistent with the November 2009 well readings. Wells installed in the levees were dry during the November 2009 readings; therefore, groundwater was assumed at an elevation consistent with the nearby landward wells.

During the subsurface explorations, some samples were obtained using a non-standard split spoon sampler in borings DD3-1 Levee, DD17-1 Levee, DD17-2 Levee, DD17-3 Levee, DD22-1 Landward, DD22-1 Levee, and DD22-2 Levee. For these samples, we applied a conversion factor (Burmister, 1948) to the measured blow count to estimate the SPT value for the liquefaction analyses.

An auto-hammer was used during the split spoon sampling. Holocene Drilling, Inc. reported that their hammer energy efficiency is 83 percent. We used this hammer efficiency value for our liquefaction analyses.

9.2 Ground Motions

Earthquake loading for three design ground motion levels is specified in ER 1110-2-1806 (1995). The three ground motion levels are defined as follows:

- Operating Basis Earthquake (OBE) Earthquake ground motions with a 50 percent probability of exceedence during the service life of the structure (based on a 100-year service life, the OBE corresponds to a return period of 144 years).
- Maximum Design Earthquake (MDE) The maximum earthquake ground motion for which the structure is designed or evaluated.

 Maximum Credible Earthquake (MCE) – The greatest earthquake that can reasonably be generated by a specific source.

The MDE and MCE have not been selected by the USACE for the sites. Therefore, we analyzed the OBE ground motion level and an alternate ground motion level that has a 5 percent probability of exceedence in 50 years. These two ground motions correspond to an average return period of 144 and 975 years, respectively.

The soft rock peak ground accelerations (PGA) and corresponding approximate characteristic moment magnitudes (M_w) were obtained from the U.S. Geological Survey 2008 National Seismic Hazard Mapping Project (Peterson and others, 2008) ground motion hazard deaggregation. The soil PGA was estimated by applying an amplification factor based on Stewart and others (2003). The magnitude, rock PGA, amplification factor, and soil PGA for the two ground motion levels are summarized in the following table:

Earthquake	Ground Motion Level		
Parameter	144-year (OBE)	975-year	
M _w *	6.6	6.6	
PGA _{rock} *	0.13	0.33	
Amplification Factor*	1.5	1.1	
PGA _{soil}	0.20	0.36	

* The approximate characteristic moment magnitudes, soft rock peak ground acceleration (PGA), and Amplification Factors are preliminary and should be revised when the maximum design earthquake and maximum credible earthquake ground motions levels have been selected for the design at each site.

OBE = operating basis earthquake

9.3 Results

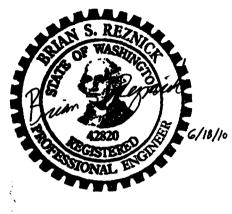
The FSs against liquefaction versus depth was calculated at each boring for the 144-year (OBE) and the 975-year ground motion levels. Plots of FS versus depth are provided in Appendix D. The approximate locations of the borings are shown in Figure 2.

The estimated FSs against liquefaction for the OBE ground motion level are less than 1 in scattered zones within the borings. The zones of potential liquefaction range in thickness from a few feet to 15 feet. For the 975-year ground motion level, our calculations show the FS against liquefaction is typically less than 1 from the groundwater surface to the depth of our explorations.

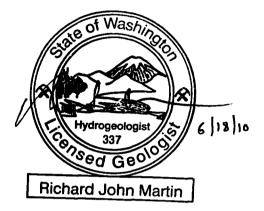
The potential effects of an estimated FS less than 1 include a reduction in soil shear strength, potential embankment instability or lateral spreading, and settlement.

10.0 LIMITATIONS

The purpose of this report is to present the results obtained from the subsurface exploration program, in situ and laboratory testing, and our interpretation of the subsurface conditions at the eight distinct locations drilled along the Skagit River levee system. The analyses and conclusions contained in this report are based on site conditions as they existed during our site visits and explorations. It should be understood that the results and interpretations presented in this draft report may be different along the levee alignment from those disclosed in the explorations and not representative of the subsurface conditions. Additional subsurface information, interpretation, and analyses in agreement with USACE standards are needed for future design and construction. If subsurface conditions different from those described in this report are observed or appear to be present during future studies or construction, we should be advised at once so that we can review these conditions and reconsider our conclusions, where necessary.


This report was prepared for the exclusive use of the USACE. It should be made available to stakeholders such as Skagit County and the dike districts, and to future contractors working at or near the levees for information on factual data only, and not as a warranty of subsurface conditions, such as those interpreted from the boring logs and discussions of subsurface conditions included in this report. Unanticipated soil and groundwater conditions are commonly encountered and cannot be fully determined merely by taking soil samples from a limited number of borings.

Within the limitations of the scope, schedule, and budget, the interpretations, analyses, and conclusions presented in this report were prepared in accordance with generally accepted geotechnical and hydrogeological engineering principals and practices in this area at the time this report was prepared. We make no other warranty, either express or implied.


The scope of our services did not include any environmental assessment or evaluation of hazardous or toxic materials in the soil, surface water, groundwater, or air on or below or around the site. Shannon & Wilson, Inc. has qualified personnel to assist you with these services should

they be necessary. We have prepared the document, "Important Information About Your Geotechnical/Environmental Report," in Appendix E to assist you and others in understanding the use and limitations of our report.

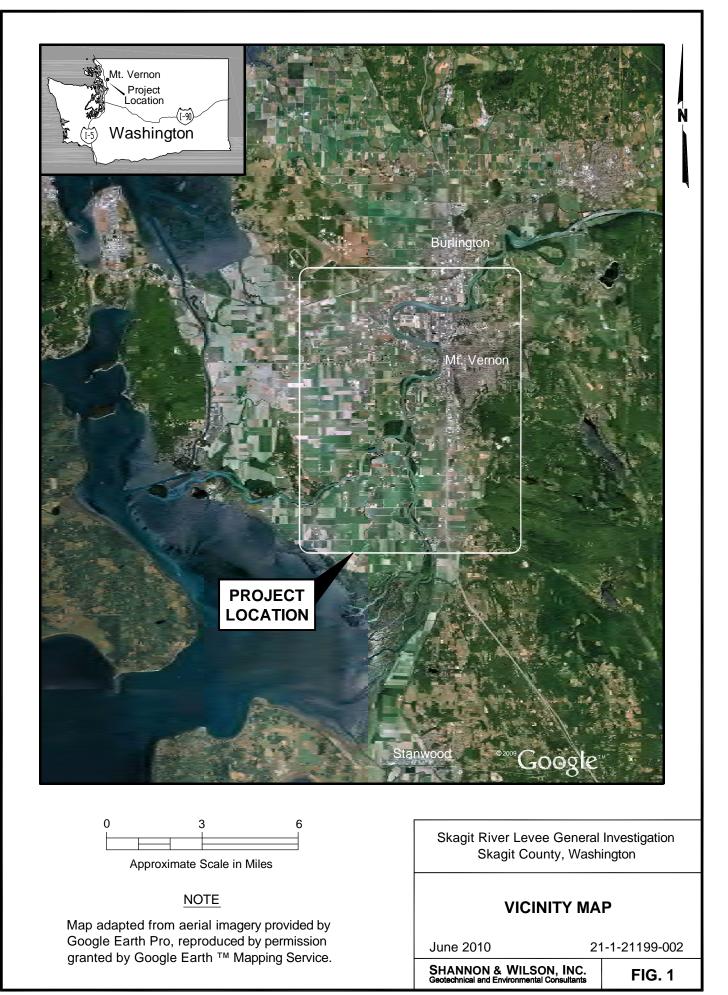
SHANNON & WILSON, INC.

Brian S. Reznick, P.E. Principal Engineer

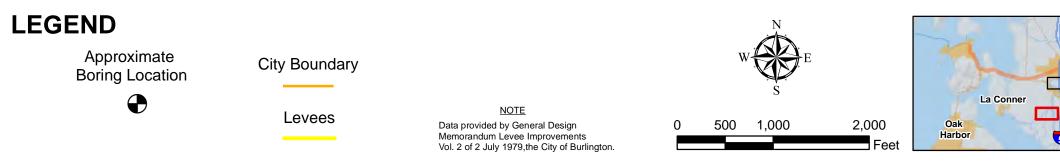
Richard J. Martin, L.H.G. Senior Associate

Geotechnical items related to subsurface characterization, soil engineering properties, and liquefaction analyses and results were prepared under the direct supervision of Brian S. Reznick, P.E.

Hydrogeologic items related to groundwater testing, analyses, and results were prepared under the direct supervision of Richard J. Martin, L.H.G.


JKN:CIJ:KES:BSR: RJM:CAR:WTL/bsr

8.0 REFERENCES

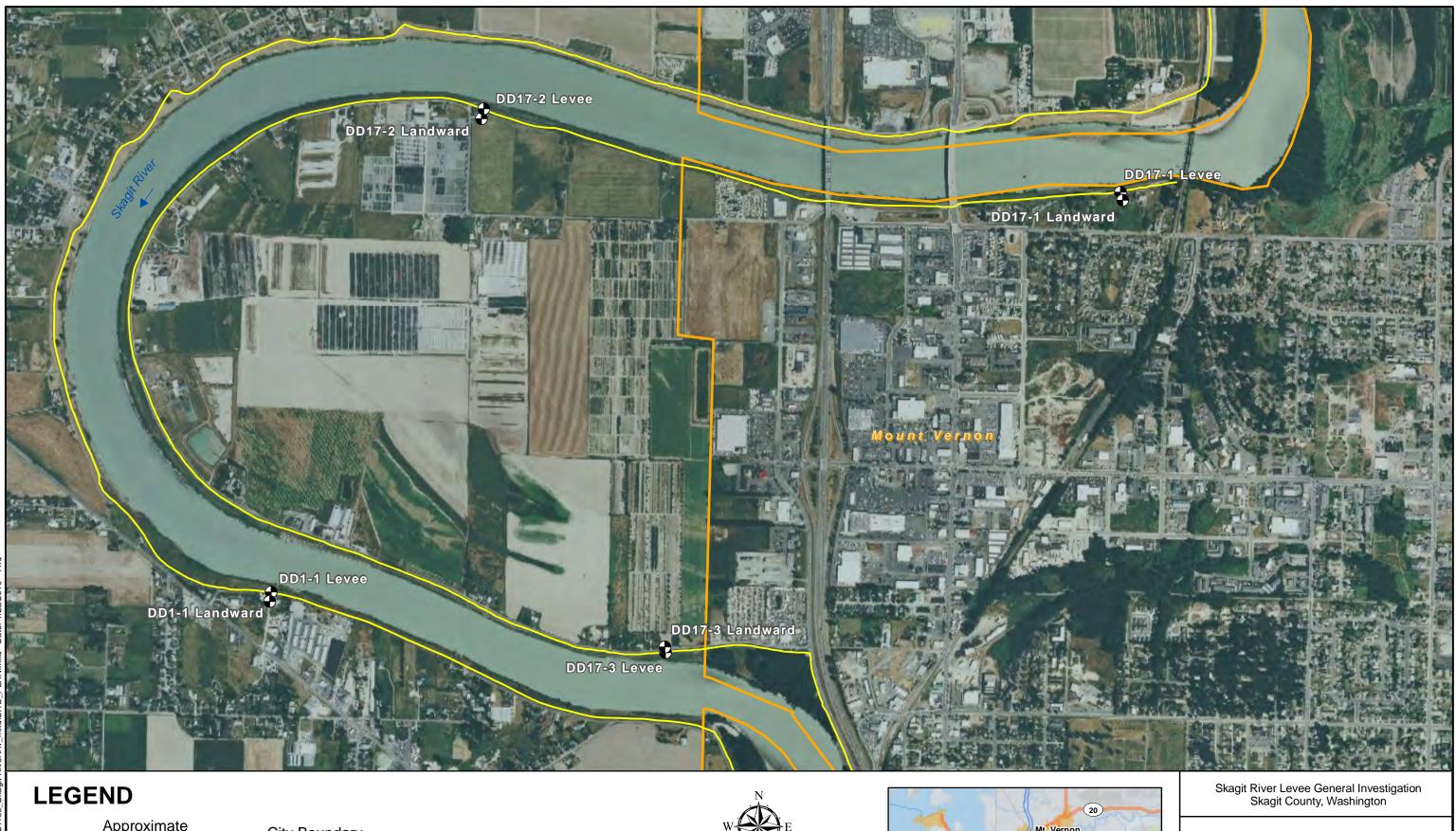

- Alyamani, Mahmoud S., and Sen, Zekai., 1993, Determination of hydraulic conductivity from complete grain-size distribution curves: Groundwater, 31.4, p. 551-555.
- ASTM International, 2009, Annual book of standards, construction, v. 4.08, soil and rock (I): D 420 D 5876: West Conshohocken, Penn., ASTM International, 1 v.
- Bouwer, Herman; and Rice, R.C., 1976, A slug test for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells: Water Resources Research, v. 12, no. 3, June, p. 423-428.
- Bouwer, Herman; and Rice, R.C., 1989, The Bouwer and Rice slug test an update: Ground Water, v. 27, no. 3, May-June, p. 304-309.
- Burmister, D.M., 1948, Principles and techniques of soil identifications: National Research Council (U.S.) Highway Research Board, Proceedings of the Annual Meeting, 1949, p. 402-433.
- Department of the Army, United States Army Corps of Engineers, 1995, Engineering and Design: Earthquake Design and Evaluation for Civil Works Projects, ER 110-2-1806, July 31.
- Hazen, A., 1892, Some physical properties of sands and gravels: Mass. State Board of Health, Annual Report 1892, p. 539-556.
- Idriss, I.M.; and Boulanger, R.W., 2006, Semi-empirical procedures for evaluating liquefaction potential during earthquakes: Proceedings of the 11th ICSDEE & 3rd ICEGE, January 2004.
- Mitchell, James K., 1993, Fundamentals of soil behavior, (2nd ed.): N.Y., Wiley, section 12.5 hydraulic conductivity, p. 234-246.
- Petersen, M.D.; Frankel, A.D.; Harmsen, S.C.; and others, 2008, Documentation for the 2008 update of the national seismic hazard maps: U.S. Geological Survey Open File Report 08–1128, available at http://pubs.usgs.gov/of/2008/1128.
- Seed, R.B. and others, 2003, Recent advances in soil liquefaction engineering: A unified and consistent framework in Proceedings, 26th Annual ASCE Los Angeles Geotechnical Spring Seminar, Keynote Presentation, H.M.S. Queen Mary, Long Beach, California, April 30.
- Shannon & Wilson, Inc., 2009, Draft General Investigation Report, Skagit River Basin Levees, Skagit County, Washington: Report prepared by Shannon & Wilson, Inc., Seattle, Wash., 21-1-21199-001, for U.S. Army Corps of Engineer, 1 v., August 26.

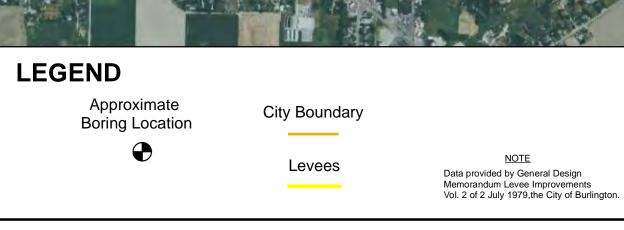
²¹⁻¹⁻²¹¹⁹⁹⁻⁰⁰²⁻R1f.docx/wp/lkn

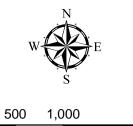
- Stewart, J.P.; Liu, A.H.; and Choi, Y., 2003, Amplification factors for spectral acceleration in tectonically active regions: Bulletin of the Seismological Society of America, v. 93, no. 1, p. 332-352.
- Youd, T.L.; and Idriss, I.M., 1997, Proceedings of the NCEER workshop on evaluation of liquefaction resistance of soils: Buffalo, N.Y., National Center for Earthquake Engineering Research, Technical Report no. NCEER-97-0022.
- Youd, L.T.; Idriss, I.M.; Andrus, Ronald D.; and others; 2001, Liquefaction resistance of soils: Summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on Evaluation of Liquefaction Resistance of Soils in Journal of Geotechnical and Environmental Engineering, New York, American Society of Civil Engineers, v. 127, no. 10, October, p. 817-833.

(9)

5


SITE AND EXPLORATION PLAN


June 2010


21-1-21199-002

SHANNON & WILSON, INC.

FIG. 2 Sheet 1 of 2

2,000

Feet

SITE AND EXPLORATION PLAN

June 2010

21-1-21199-002

SHANNON & WILSON, INC.

FIG. 2 Sheet 2 of 2

APPENDIX A

BORING LOGS

21-1-21199-002

.

APPENDIX A

BORING LOGS

TABLE OF CONTENTS

FIGURES

- A-1 Soil Classification and Log Key (2 sheets)
- A-2 Log of Boring DD1-1 Landward
- A-3 Log of Boring DD1-1 Levee (2 sheets)
- A-4 Log of Boring DD1-2 Landward
- A-5 Log of Boring DD1-2 Levee (2 sheets)
- A-6 Log of Boring DD3-1 Landward
- A-7 Log of Boring DD3-1 Levee (2 sheets)
- A-8 Log of Boring DD17-1 Landward
- A-9 Log of Boring DD17-1 Levee (2 sheets)
- A-10 Log of Boring DD17-2 Landward
- A-11 Log of Boring DD17-2 Levee (2 sheets)
- A-12 Log of Boring DD17-3 Landward (2 sheets)
- A-13 Log of Boring DD17-3 Levee (2 sheets)
- A-14 Log of Boring DD22-1 Landward
- A-15 Log of Boring DD22-1 Levee (2 sheets)
- A-16 Log of Boring DD22-2 Landward
- A-17 Log of Boring DD22-2 Levee (2 sheets)

Shannon & Wilson, Inc. (S&W), uses a soil classification system modified from the Unified Soil Classification System (USCS). Elements of the USCS and other definitions are provided on this and the following page. Soil descriptions are based on visual-manual procedures (ASTM D 2488-93) unless otherwise noted.

S&W CLASSIFICATION OF SOIL CONSTITUENTS

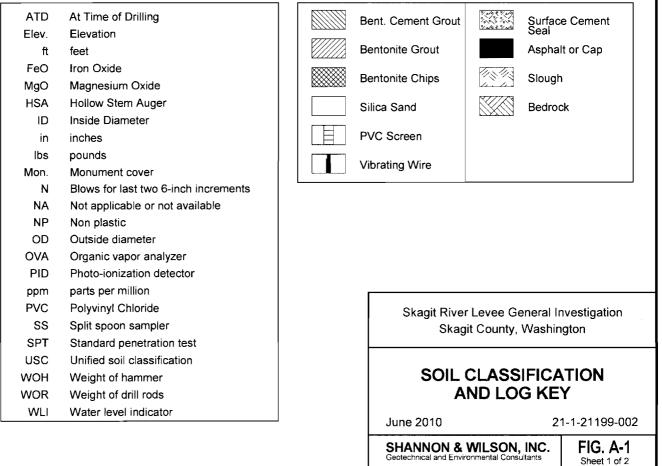
- MAJOR constituents compose more than 50 percent, by weight, of the soil. Major consituents are capitalized (i.e., SAND).
- Minor constituents compose 12 to 50 percent of the soil and precede the major constituents (i.e., silty SAND). Minor constituents preceded by "slightly" compose 5 to 12 percent of the soil (i.e., slightly silty SAND).
- Trace constituents compose 0 to 5 percent of the soil (i.e., slightly silty SAND, trace of gravel).

MOISTURE CONTENT DEFINITIONS

- Dry Absence of moisture, dusty, dry to the touch
- Moist Damp but no visible water
- Wet Visible free water, from below water table

ABBREVIATIONS

GRAIN SIZE DEFINITION


DESCRIPTION	SIEVE NUMBER AND/OR SIZE	
FINES	< #200 (0.08 mm)	
SAND* - Fine - Medium - Coarse	#200 to #40 (0.08 to 0.4 mm) #40 to #10 (0.4 to 2 mm) #10 to #4 (2 to 5 mm)	
GRAVEL* - Fine - Coarse	#4 to 3/4 inch (5 to 19 mm) 3/4 to 3 inches (19 to 76 mm)	
COBBLES	3 to 12 inches (76 to 305 mm)	
BOULDERS	> 12 inches (305 mm)	

* Unless otherwise noted, sand and gravel, when present, range from fine to coarse in grain size.

RELATIVE DENSITY / CONSISTENCY

COARSE-GRAINED SOILS		FINE-GR	AINED SOILS
N, SPT, <u>BLOWS/FT.</u>	RELATIVE DENSITY	N, SPT, <u>BLOWS/FT.</u>	RELATIVE CONSISTENCY
0 - 4	Very loose	Under 2	Very soft
4 - 10	Loose	2 - 4	Soft
10 - 30	Medium dense	4 - 8	Medium stiff
30 - 50	Dense	8 - 15	Stiff
Over 50	Very dense	15 - 30	Very stiff
		Over 30	Hard

WELL AND OTHER SYMBOLS

BORING_CLASS1_21-21199.GPJ_SWNEW.GDT 6/1/10

	UNIFIED (SOIL CLASSIF From USACE 1	ICATIO	N SYST emo 3-3	EM (USCS) 57)
MAJOR DIVISIONS			GROUP/	GRAPHIC MBOL	TYPICAL DESCRIPTION
		Clean Gravels	GW		Well-graded gravels, gravels, gravel/sand mixtures, little or no fines
COARSE- GRAINED SOILS (more than 50% retained on No. 200 sieve)	Gravels (more than 50% of coarse fraction retained on No. 4 sieve)	(less than 5% fines)	GP		Poorly graded gravels, gravel-sand mixtures, little or no fines
		Gravels with Fines	GM		Silty gravels, gravel-sand-silt mixtures
		(more than 12% fines)	GC		Clayey gravels, gravel-sand-clay mixtures
	Sands (50% or more of coarse fraction passes the No. 4 sieve)	Clean Sands	sw		Well-graded sands, gravelly sands, little or no fines
		(less than 5% fines)	SP		Poorly graded sand, gravelly sands, little or no fines
		Sands with Fines	ѕм		Silty sands, sand-silt mixtures
		(more than 12% fines)	sc		Clayey sands, sand-clay mixtures
FINE-GRAINED SOILS (50% or more passes the No. 200 sieve)		Inorgania	ML		Inorganic silts of low to medium plasticity, rock flour, sandy silts, gravelly silts, or clayey silts with slight plasticity
	Silts and Clays (liquid limit less than 50)	Inorganic	CL		Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays
		Organic	OL		Organic silts and organic silty clays of low plasticity
		Inorgania	мн		Inorganic silts, micaceous or diatomaceous fine sands or silty soils, elastic silt
	Silts and Clays (liquid limit 50 or more)	Inorganic	сн		Inorganic clays of medium to high plasticity, sandy fat clay, or gravelly fa clay
		Organic	он		Organic clays of medium to high plasticity, organic silts
HIGHLY- ORGANIC SOILS	Primarily organi color, and o	ic matter, dark in organic odor	РТ		Peat, humus, swamp soils with high organic content (see ASTM D 4427)

NOTE: No. 4 size = 5 mm; No. 200 size = 0.075 mm

<u>NOTES</u>

- 1. Dual symbols (symbols separated by a hyphen, i.e., SP-SM, slightly silty fine SAND) are used for soils with between 5% and 12% fines or when the liquid limit and plasticity index values plot in the CL-ML area of the plasticity chart.
- 2. Borderline symbols (symbols separated by a slash, i.e., CL/ML, silty CLAY/clayey SILT; GW/SW, sandy GRAVEL/gravelly SAND) indicate that the soil may fall into one of two possible basic groups.

Skagit River Levee General Investigation Skagit County, Washington

SOIL CLASSIFICATION AND LOG KEY

June 2010

21-1-21199-002

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants FIG. A-1 Sheet 2 of 2

Total Depth: 41.5 ft. Northing: ~ 525,847 ft. Top Elevation: ~ Easting: ~ 1,268,352 ft. Vert. Datum: Station: ~ Horiz. Datum: NAD83 Offset: ~	Drill Drill	ling Co I Rig E	ethod: ompany: Equipment: mments:	Ho		ry Drilling ile Truck	Hole Diam.: Rod Diam.: Hammer Type	5 in. NWJ Automatic
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol		Water	Depth, ft.		TION RESIST/ Vt. & Drop: <u>1</u> 20	ANCE (blows/foot) 40 lbs / 30 inches 40 60
Very loose, brown, fine sandy SILT to silty, fine SAND; moist; trace of fine roots, laminated; (Ha[ob]) ML/SM.					5		•	
Interbedded, loose, brown and gray, slightly silty, fine to medium SAND and silty, fine SAND; moist to wet; (Ha[cd]) SP-SM/SM.	9.5				10		•	
Loose to medium dense, gray, trace of silt to slightly silty, slightly fine gravelly to fine gravelly, fine to medium SAND; wet; (Ha[cd]) SP/SP-SM.	14.5		6 7 7		15 20		•	
			8 9		25		•	
			10		30	$\Leftrightarrow \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	•	
			11		35	\diamond	•	
BOTTOM OF BORING	41.5		12		40		•	
COMPLETED 10/16/2009					45			
* Sample Not Recovered □ Piezomer ∴ Standard Penetration Test □ Bentonite ⑤ 3" O.D. Thin-Walled Tube □ Bentonite ✓ Ground V ✓ Ground V	e-Cemer e Chips/ e Grout	nt Gro Pellets	8				20 ◇ % Fines (< ● % Water (Content
NOTES					Ska	-	ee General Ir unty, Washin	-
 Refer to KEY for explanation of symbols, codes, abbreviation The stratification lines represent the approximate boundaries and the transition may be gradual. The discussion in the text of this report is necessary for a pro- 	s betwee	en soil	types,)G C ine 20			Landward
the nature of the subsurface materials.		acioldi				-	SON, INC.	FIG. A-2

Total Depth: 61.5 ft. Northing: ~ 525,954 ft. Top Elevation: Easting: ~ 1,268,368 ft.		Drilling Method: Drilling Company:		: _	Mud Rota Holocene			
Vert. Datum: Station: ~ Horiz. Datum: NAD83 Offset: ~		-	Equipme mments	_	B-61 Mol	bile Truck Hammer Type: <u>Automatic</u>		
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.		Symbol	Samples	Ground	Water Depth, ft.	PENETRATION RESISTANCE (blows/foot) ▲ Hammer Wt. & Drop: <u>140 lbs / 30 inches</u> 0 20 40 60		
Loose to medium dense, brown, fine sandy SILT; moist; trace of organics; (Hf) ML.	17.0				5 10 15			
sand to slightly fine sandy SILT; moist to wet; scattered roots; (Ha[ob]) ML.	23.0				20			
Loose, gray, silty, fine to medium SAND; wet; scattered silty, fine sand seams, iron-oxide staining; (Ha[ob]) SM.	26.5		. 9 		25	5 		
Interbedded, loose, gray-brown, slightly fine sandy to fine sandy SILT, silty, fine SAND, and medium stiff, organic SILT; wet; 1/2-inch silty clay seam and 7-inch-thick wood fragment; (Ha[ob]) ML/SM/OL.	30.0				30			
Loose to medium dense, gray, trace to slightly fine gravelly, trace to slightly silty SAND; wet; (Ha[cd]) SP-SM/SP.			12		35			
CONTINUED NEXT SHEET					40 45			
			•		×	$0 \qquad \qquad$		
	e-Cemer e Chips/	nt Gro	ut	ilter		 ◇ % Fines (<0.075mm) ● % Water Content Plastic Limit → ● ↓ Liquid Limit Natural Water Content 		
NOTES					Sk	kagit River Levee General Investigation Skagit County, Washington		
 Refer to KEY for explanation of symbols, codes, abbreviation The stratification lines represent the approximate boundaries and the transition may be gradual. 	s betwee	en soi	types,		LOC	G OF BORING DD1-1 Levee 2010 21-1-21199-002		
 The discussion in the text of this report is necessary for a proper understanding of the nature of the subsurface materials. Groundwater level, if indicated above, is for the date specified and may vary. <u>LISCS designation is based on visual-manual classification and selected lab</u> testing. 					State State State Scote State State Geote Scote Scote State Scote Scote			

Total Depth: 61.5 fr Top Elevation: ~ Vert. Datum:	Northing: _ Easting: _ Station: _	~ 525,954 ft. ~ 1,268,368 ft. ~	Drill	ing Co	ethod: ompany: iquipmer	Но	id Rota locene 61 Mobi	,	_ Hole Diam.: _ Rod Diam.: _ Hammer Type	5 in. NWJ : Automa	
Horiz. Datum: <u>NAD8</u>	B Offset:	~	_ Oth	er Cor	mments:						
SOIL D Refer to the report text fo subsurface materials and drill indicated below represent th material types, and th	ng methods. The s approximate boun	tratification lines daries between	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.		TION RESISTA Wt. & Drop: <u>1</u> 20	•	ws/foo ches
					15						
Medium dense, gray, SAND; wet; (Ha[g]) S		gravelly	53.0	•••••	16		55				
Medium dense, gray, medium SAND; wet; (61.5		17		60				
	ED 10/16/2009)					65				
							70				
							75				
							80				
							85				
							90				
							95				
* Sample Not Recovered ☐ Standard Penetration ⑤ 3" O.D. Thin-Walled	Test	D Piezome N Bentonite Bentonite D Bentonite	e-Ceme e Chips/	nt Grou	ut	lter		0 Plastic	20 ◇ % Fines (< ● % Water C Limit ↓ ● Natural Water C	Content Liquid Lim	iit
							Ska	-	vee General In ounty, Washin	-	
 Refer to KEY for explanation of the stratification lines in and the transition may be 	epresent the approx	odes, abbreviatior							RING DD'		
the nature of the subsurface	The discussion may be gradual. The discussion in the text of this report is necessary for a nature of the subsurface materials. Groundwater level, if indicated above, is for the date speci				Ū		une 20	010 21-1-21199-002 NON & WILSON, INC. FIG. A-3 Sheet 2 of 2			

Total Depth: 41.5 ft. Northing: ~ 508,726 ft. Top Elevation: ~ Easting: ~ 1,263,857 ft. Vert. Datum: Station: ~ Horiz. Datum: NAD83 Offset: ~	Dril Dril	ling C Rig E	ethod: ompany Equipme mments	r: <u>H</u> ent: <u>B</u> l	ud Rota blocene K-81 Tri	Drilling	Hole Diam.: Rod Diam.: Hammer Type:	5 in. NWJ Automatic
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.		TION RESISTAN Vt. & Drop: <u>14</u>	0 lbs / 30 inches
Soft, brown, trace to slightly clayey, slightly fine sandy SILT; moist; scattered roots, iron-oxide staining; (Ha[ob]) ML. Very loose, brown, silty, fine SAND; wet; scattered roots, trace of iron-oxide staining; (Ha[ob]) SM. Soft, brown WOOD; moist; horizontal grain; (WOOD). Loose to medium dense, gray, trace to slightly silty, fine medium SAND; wet; trace to scattered wood fragments, scattered mica flakes; (Ha[cd]) SP/SP-SM. BOTTOM OF BORING COMPLETED 10/19/2009	- 6.8 - 9.5 - 12.0		$1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12$		5 10 15 20 25 30 35 40 45			
* Sample Not Recovered Standard Penetration Test 3" O.D. Thin-Walled Tube Sentonite Ground N	e-Ceme e Chips/ e Grout	nt Gro Pellets	ut S	Filter	Ska	Plastic Li M agit River Leve	20 ⇒ % Fines (<0 ● % Water Co imit → ↓ Natural Water Co ee General Inv unty, Washing	ontent Liquid Limit ntent estigation
<u>NOTES</u> 1. Refer to KEY for explanation of symbols, codes, abbreviation 2. The stratification lines represent the approximate boundaries and the transition may be gradual. 3. The discussion in the text of this report is necessary for a pro- the nature of the subsurface materials.	s betwe	en soil	types,		OG (June 20			Landward
 Groundwater level, if indicated above, is for the date specifie USCS designation is based on visual-manual classification a 		-		SHANNON & WILSON, INC. FIG. A			FIG. A-4	

Total Depth: 61.5 ft. Northing: ~ 508,713 ft. Top Elevation: ~ Easting: ~ 1,263,901 ft. Vert. Datum: Station: ~ Horiz. Datum: Offset: ~	_ Drill _ Drill	ing C Rig I	lethod: ompany Equipme mments	nt: <u>BK</u>	d Rota locene -81 Tru	Drilling Rod Diam.: NWJ
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.	PENETRATION RESISTANCE (blows/foot) ▲ Hammer Wt. & Drop: <u>140 lbs / 30 inches</u> 0 20 40 60
Loose to medium dense, brown, fine sandy SILT; moist; trace of organics, locally trace of clay, local slightly silty sand zones; (Hf) ML.					5	
- Iron-oxide-stained seams below 12 feet.			5			№
Interbedded, very loose to loose and soft to medium stiff, brown, fine sandy SILT, slightly fine sandy SILT, trace of clay, and silty, fine SAND; moist; scattered organics and wood, trace of iron-oxide-stained seams; (Ha[ob]) ML/SM.	14.5		6 7 8 8		15 20	
Gray, fine SAND, trace of silt; wet; stratified; (Ha[cd]) SP.	23.0		• • •		25	¢ •
Loose to medium dense, gray, slightly silty to silty, fine to medium SAND; wet; trace of organics, locally trace of fine gravel; (Ha[cd]) SP-SM/SM. - Scattered wood fragments at 35 feet.	20.0				30 35	
CONTINUED NEXT SHEET					40 45	
LEGEND	1	<u> '</u> .	1			0 20 40 60
* Sample Not Recovered ⊡ □ Piezome □ Standard Penetration Test Standard Penetration Test Bentonite ⑤ ③ ⑦ O.D. Thin-Walled Tube Bentonite ⑧ ⑧ Ø Bentonite	e-Cemer e Chips/	nt Gro	ut	ilter		 % Fines (<0.075mm) % Water Content Plastic Limit Plastic Limit Matural Water Content
					Ska	agit River Levee General Investigation Skagit County, Washington
<u>NOTES</u> 1. Refer to KEY for explanation of symbols, codes, abbreviation 2. The stratification lines represent the approximate boundaries and the transition may be gradual.	s betwee	en soi	l types,			G OF BORING DD1-2 Levee
 The discussion in the text of this report is necessary for a prothe nature of the subsurface materials. Groundwater level, if indicated above, is for the date specifie 					une 20	
 Groundwater rever, in indicated above, is for the date specifie USCS designation is based on visual-manual classification a 				Ge	otechnic	NON & WILSON, INC. and Environmental Consultants Sheet 1 of 2

Total Depth: 61.5 ft. Top Elevation: ~ Vert. Datum:	Northing: ~ 508,713 ft. Easting: ~ 1,263,901 ft. Station: ~	_ Drill _ Drill	ing Co Rig E	ethod: ompany Equipme	nt: <u>Bk</u>	ud Rota blocene (-81 Tru	Drilling	Hole Diam.: Rod Diam.: Hammer Type	5 in. NWJ Automatic
Horiz. Datum: <u>NAD83</u> SOIL DESC Refer to the report text for a pu subsurface materials and drilling indicated below represent the app material types, and the trai	roper understanding of the ethods. The stratification lines proximate boundaries between	th Depth, ft.	er Coi Symbol	samples Samples	Ground Water	Depth, ft.		TION RESISTA Wt. & Drop: <u>1</u>	NCE (blows/foo 40 lbs / 30 inches 40 6
				14		55		•	
BOTTOM OF COMPLETED		61.5		. 16		60		•	
						70			
						75			
						80 85			
						90			
						95			
 * Sample Not Recovered ☐ Standard Penetration Test ① 3" O.D. Thin-Walled Tube 	LEGEND Piezome Solution Bentonite Bentonite Bentonite	e-Ceme e Chips/	nt Gro	ut	ilter		0 Plastic I	20 ◇ % Fines (< ● % Water C Limit ↓ ● Natural Water C	Content Liquid Limit
						Ska		vee General In ounty, Washin	
 Refer to KEY for explanation The stratification lines represent the transition may be gradule. The discussion in the text of 	sent the approximate boundaries	s betwee	en soil	types,		LOG		RING DD'	1-2 Levee
 The discussion in the text of the nature of the subsurface ma Groundwater level, if indicate USCS designation is based 	aterials.	ed and m	iay var	y.				.SON, INC. ental Consultants	FIG. A-5 Sheet 2 of 2

Total Depth: Top Elevation: Vert. Datum: Horiz. Datum:	41.5 ft. ~ NAD83	_ Northing: _ _ Easting: _ _ Station: _ _ Offset: _	~ 507,123 ft. ~ 1,269,522 ft. ~ ~	_ Dril _ Dril	ling C I Rig E	ethod: ompany Equipmo mments	/: <u>H</u> ent: <u>B</u>	lud Rota olocene K-81 Tri	Drilling	_ Hole Diam.: _ Rod Diam.: _ Hammer Type	5 in. NWJ : Automatic
subsurface materia indicated below re	ls and drilling n present the ap	proper understain methods. The st	tratification lines daries between	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.		ATION RESIST	ANCE (blows/foo 40 lbs / 30 inches 40 6
Loose, brown scattered orga		-	Γ; moist;			1					
Very loose to SAND; wet; (I			silty, fine	4.5			11/5/2009	5	•	•	
Loose, gray S wet; (Ha[cd])		of silt and fir	ne gravel;	9.5				10		•	
Loose, gray, f wet; (Ha[g]) S	• •	SAND, trace	e of silt;			5 6		15		•	
Loose, gray, t trace of silt; w feet; (Ha[cd])	et; local slig		-	17.0		7 7 8		20		•	
						9		25		•	
Medium dens trace of fine g	ravel; wet; s			• 34.0				30 35		•	
fragments; (H Loose, gray, s clay; wet; trac	silty, fine to r			41.5		12		40		•	×
	OTTOM OF	F BORING 10/20/2009)	41.5				45			
	t Recovered enetration Test	<u>LEGENI</u>	2 ⊡ ⊡ Piezome ⊗ ⊗ Bentonite ⊗ ⊗ Bentonite Ø Ø Bentonite ⊈ Ground N	e-Ceme e Chips/ e Grout	nt Gro /Pellets	ut S	-ilter		0	20	Content
		NOTE	S					Sk	-	evee General Ir County, Washir	-
The stratifica and the transitio	tion lines repre n may be grade	n of symbols, co sent the approxual.	odes, abbreviatior ximate boundarie:	s betwe	en soil	types,		OG (June 20			1 Landward
The discussion the nature of the second sec		aterials.	ecessary for a pro		dersta	nding of				LSON, INC.	FIG. A-6

Total Depth: 61.5 ft. Northing: ~ 507,134 ft. Top Elevation: ~ Easting: ~ 1,269,453 ft. Vert. Datum: Station: ~ Horiz. Datum: NAD83 Offset: ~	_ Dril _ Dril	lling Method: lling Company: ll Rig Equipment: ner Comments:	Mud Rota Holocene BK-81 Tru	Drilling Rod Diam.:	5 in. NWJ e: Automatic
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol Samples	Depth, ft.	PENETRATION RESIST ▲ Hammer Wt. & Drop:	· · ·
Medium dense, gray, slightly clayey, slightly gravelly, silty SAND; moist; scattered roots; (Hf) SM. Loose, brown, silty, fine SAND to fine sandy SILT, trace of fine gravel; moist; trace of organics; (Hf) SM/ML. Medium dense, gray-brown, silty, fine SAND; moist; scattered fine sandy silt seams; (Hf) SM.	4.5 9.0		5		
Medium stiff, brown, slightly clayey SILT, trace of fine sand; wet; faint iron-oxide mottles; (Ha[ob])	14.5 16.5		15		•
Gray and orange, fine sandy SILT grading to silty, fine SAND; wet; iron-oxide mottling, stratified, trace of fine roots; (Ha[ob]) ML/SM. Medium dense, gray, slightly silty SAND, trace of	19.1 23.0		20	Nonstandard	
fine gravel; wet; (Ha[cd]) SP-SM. Medium dense, gray, fine gravelly SAND, trace of silt; wet; (Ha[g]) SP. Medium dense, gray, trace of fine gravel to	28.0	9	25		
slightly fine gravelly, slightly silty SAND; wet; (Ha[cd]) SP-SM/SW-SM.			35		
			40		
CONTINUED NEXT SHEET	48.0				
* Sample Not Recovered □ □ Piezomet ⊥ Standard Penetration Test □ □ Bentonite ⑤ 3" O.D. Thin-Walled Tube □ □ Bentonite □ 3" O.D. Split Spoon Sample □ □ Bentonite	e-Ceme e Chips	Pellets		0 20 ◇ % Fines (● % Water Plastic Limit Natural Water	Content – Liquid Limit Content
NOTES			Ska	agit River Levee General I Skagit County, Washir	-
 Refer to KEY for explanation of symbols, codes, abbreviation The stratification lines represent the approximate boundaries and the transition may be gradual. 	betwe	een soil types,	LOC June 20	OF BORING DD	3-1 Levee
The discussion in the text of this report is necessary for a pro the nature of the subsurface materials.	oper un d and n	Ũ		NON & WILSON, INC.	FIG. A-7

Total Depth: 61.5 ft. Northing: ~ 507, Top Elevation: ~ Easting: ~ 1,269, Vert. Datum: Station: ~ Horiz. Datum: NAD83 Offset: ~	,453 ft.	Drilli Drill	ng Co Rig E	ethod: ompany: quipme mments	Ho nt: Bk	ud Rota blocene <-81 Tru	Drilling		Rod	Diam. Diam.: mer Ty	: _		5 in. NW. utoma	J
SOIL DESCRIPTION Refer to the report text for a proper understanding of th subsurface materials and drilling methods. The stratification indicated below represent the approximate boundaries bet material types, and the transition may be gradual.	n lines	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.	PENE ▲ Har	ETRAT nmer V	-				•	ws/foo aches
Medium dense, gray, silty, fine to medium SAND; wet; trace of shells and organics; (He SM. Gray, trace of silt to slightly silty, fine to mediu SAND; wet; trace of shell fragments, scattere	im f	53.0		14		55			•					
coarse wood fragments; (Ha[cd]/He) _ SP-SM/SP. Dense, gray, silty, fine to medium SAND; wet _ (Ha[cd]) SM.		59.0 61.5		⊥ 16⊥		60			-					
BOTTOM OF BORING COMPLETED 10/21/2009						65								
						70								
						75								
						80								
						85								
						90								
						95								
							0		20			40		6
Standard Penetration Test Image: Base of the second seco	Piezometer Bentonite-C Bentonite C Bentonite C	Cemer Chips/I	nt Grou	ut	ilter		-	astic Li	⊃ % ● % mit ┠	Wate	6 (<0.0 er Cor I er Con	nteni Liqui	t	
						Ska	agit Rive Ska	er Leve git Co				-	ation	
<u>NOTES</u> 1. Refer to KEY for explanation of symbols, codes, abb 2. The stratification lines represent the approximate bo and the transition may be gradual.							G OF	BOF	RING	G D				
 The discussion in the text of this report is necessary the nature of the subsurface materials. Groundwater level, if indicated above, is for the date USCS designation is based on visual-manual classif 	specified a	and m	ay var	y.		une 20	10	vironmen	SON,	INC	21-1	FIC	199- 5. A et 2 o	-7

Total Depth: _ Top Elevation:	43.5 ft. ~	_ Northing: _ Easting:	~ 530,262 ft. ~ 1,277,725 ft.	_	-	ethod: ompany		d Rota locene	ary Drilling	Hole Di Rod Dia	-		5 in. NWJ	
Vert. Datum:		Station:	~		-	Equipme			oile Truck	Hamme	-		tomatic	
Horiz. Datum:	NAD83	_ Offset: _	~	_ Oth	er Co	mments	:							_
subsurface material indicated below rep	s and drilling n present the ap	proper understar methods. The st	ratification lines daries between	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.	PENETRA ▲ Hammer	-			(blows/f 30 inche	
Loose, brown,			-						0	20		40		
trace of fine ro	ots; (Ha[ob	o]) ML.												
Very loose to l	oose brow	n silty fine s	SAND	4.0				_	7					
moist; scattere						2		5						
(Ha[cd]) SM.														
Loose to medi	um dense	brown sand	lv fine	9.0	Ð			40			· · · · · · ·			
GRAVEL, trac					000	⁴⊥		10						
silt; wet; strong	-	•			000	5	▼					: :		
rounded to su				14.0			11/4/2009	45						•••
Loose, gray, s SAND to silty	• • •	• • •				6	11/4	15						
scattered silty		-	vei, wei,			7								•••
iron-oxide-stai			ers below	19.0				20				::		•••
17 feet, trace	-		/					20						
Loose to medi						9				•				
silty, trace of fi wet; (Ha[cd]) \$	-		y Sand;			[•]		25					<u></u>	
								25						
								30	7					
								00			· · · · · · ·			
						11				•				
				35.0				35						
Medium dense medium SANI												::		•••
(Ha[cd]) SP-S		ine gravei, w	01,			12								
								40				::		
	OTTOMO			43.5		13								
		F BORING D 10/9/2009						45		<u> </u>			<u></u> .	
											· · · · · · · ·			•••
									0	20		40	<u></u>	-
* Sample Not	Recovered	LEGEND) Descome	ter Scre	en and	l Sand F	ilter			🛇 % Fi	nes (<0.0)75mm	ר)	
	enetration Test	t	Bentonite							• % W	ater Co	ntent		
			Bentonite	•	Pellets	6								
			■ Bentonite		evel in	Well								
				_				Ska	agit River Le	vee Gen	eral Inve	estiga	tion	-
									Skagit Co			-		
		NOTES	S											-
1. Refer to KEY	for explanatio		<u>o</u> odes, abbreviatior	ns and c	lefinitic	ons.		G C	F BORI	ים א)17_1	l ar	ıdwa	.
2. The stratificat	ion lines repre	esent the approx	kimate boundaries								- 1 7 - 1	Lui		1
	n in the text o	f this report is n	ecessary for a pro	oper un	derstar	nding of	Ji	une 20	010		21-1	1-211	99-002	2
the nature of the	subsurface m	aterials.				Ū	6	НТИ	NON & WIL	SON II			i. A-8	-
	ever it indicat	red above is for	the date specifie	d and m	iav var	v	1 3				10 . I	- II - II - Z	. Λ_X	

Total Depth: 63.5 ft. Northing: ~ 530,351 ft. Top Elevation: ~ Easting: ~ 1,277,702 ft.	 Drilling Method: Drilling Company: 		Hole Diam.: <u>5 in.</u> Rod Diam.: NWJ
Vert. Datum: Station: ~	Drill Rig Equipment:		Hammer Type: <u>Automatic</u>
Horiz. Datum: <u>NAD83</u> Offset: <u>~</u>	Other Comments:		
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft. Symbol Samples	PENETRATIO	ON RESISTANCE (blows/foo . & Drop: <u>140 lbs / 30 inches</u>
Medium dense, brown, slightly clayey, fine gravelly, silty SAND; moist; iron-oxide mottles, trace of fine roots; (Hf) SM.			20 40 €
Very stiff, brown, silty CLAY, trace of sand and gravel and medium dense, fine sandy SILT; moist; trace of organics; (Hf) CL/ML.		5 ••••••••••••••••••••••••••••••••••••	Nonstandard
Medium dense, brown, fine sandy SILT; moist; scattered slightly fine sandy to fine sandy silt layers; (Hf) ML.	4	10	Nonstandard 🔶
Loose to medium dense, brown and gray, silty, fine SAND, trace of fine gravel; moist; (Ha[ob]) SM.		15	rd standard
		20 ANonst	standard andard
Loose, brown, silty, fine to medium SAND; moist; (Ha[cd]) SM.	25.0	25	•
Loose to medium dense, gray, trace of silt to slightly silty, fine to medium SAND, trace of fine gravel; wet; (Ha[cd]) SP-SM/SP/SW-SM.		30	•
		40	•
- Slightly silty sand layer at 47 feet.		45	•
CONTINUED NEXT SHEET			
Image: 3" O.D. Split Spoon Sample Image: Split S	eter Screen and Sand Filter e-Cement Grout e Chips/Pellets e Grout	⊂ ● Plastic Lin	20 40 € % Fines (<0.075mm) % Water Content hit
		-	e General Investigation nty, Washington
NOTES 1. Refer to KEY for explanation of symbols, codes, abbreviation 2. The stratification lines represent the approximate boundaries and the transition may be gradual.	s between soil types,		NG DD17-1 Levee
 The discussion in the text of this report is necessary for a pr the nature of the subsurface materials. Groundwater level if indicated above is for the date specifie 		June 2010	21-1-21199-002 ON, INC. FIG. A-9
4. Groundwater level, if indicated above, is for the date specifie	ed and may vary. and selected lab	SHANNON & WILS Geotechnical and Environmenta	I Consultants Sheet 1 of 2

Total Depth: 63.5 ft. Top Elevation: ~ Vert. Datum:	Northing: <u>~ 530,351 ft.</u> Easting: <u>~ 1,277,702 ft.</u> Station: ~	Drill	ing C	lethod: ompany: Equipme	Но		ry Drilling ile Truck	_ Hole Diam.: _ Rod Diam.: _ Hammer Type:	5 in. NWJ Automatic
Horiz. Datum: NAD83	Offset: ~		-	mments:					
subsurface materials and drilling m indicated below represent the app	oper understanding of the ethods. The stratification lines roximate boundaries between	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.			10 lbs / 30 inches
BOTTOM OF	for a proper understanding of the rilling methods. The stratification lines the approximate boundaries between the transition may be gradual.	63.5				55 60 65 70 75 80 85			
						90 95			
							0		
* Sample Not Recovered 3" O.D. Split Spoon Sample Standard Penetration Test	LEGEND Piezome Bentonite Bentonite Bentonite	e-Cemer e Chips/	nt Gro	ut	lter		-	 ◇ % Fines (◆ % Water C Limit → → Natural Water Co 	0.075mm) ontent Liquid Limit
						Ska		vee General Inv ounty, Washing	
 Refer to KEY for explanation The stratification lines repres and the transition may be gradu 	ent the approximate boundaries al.	s betwee	en soil	types,					
 The discussion in the text of the nature of the subsurface ma Groundwater level, if indicate USCS designation is based. 	iterials. ed above, is for the date specifie	d and m	nay vai	ry.		une 20		21 SON, INC.	-1-21199-002 FIG. A-9 Sheet 2 of 2

Total Depth: 38.5 ft. Northing: ~ 531,266 ft. Top Elevation: ~ Easting: ~ 1,270,707 ft		0	ethod: ompany:		ld Rota	,	Hole Diam.: Rod Diam.:	5 in. NWJ
Vert. Datum: Station: ~ Horiz. Datum: NAD83 Offset: ~		-	Equipment mments:	: <u>B</u> -0	61 Mob	ile Truck	Hammer Type:	Automatic
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.		ION RESISTA /t. & Drop:14	NCE (blows/foo 10 lbs / 30 inches
Indicated below represent the approximate boundaries between material types, and the transition may be gradual. Loose, mottled brown and gray, fine sandy SILT, trace of clay; moist; scattered iron-oxide staining, slightly fine gravelly sand layer at 9.1 feet; (Ha[ob]) ML. Soft, brown, slightly clayey, fine sandy SILT; wet; trace of organics; (Ha[ob]) ML. Medium dense, brown, slightly silty, fine gravelly SAND; moist; scattered silt pockets; (Ha[cd]) SP-SM. Very loose to medium dense, brown and gray, silty, fine SAND to slightly fine sandy SILT, trace of clay; wet; (Ha[ob]) SM/ML. Medium dense, gray-brown, slightly silty, sandy GRAVEL; wet; scattered silty, fine sand seams; (Ha[g]) GP-GM. Loose to medium dense, gray, trace of silt to slightly silty, fine gravelly SAND and sandy GRAVEL, trace of silt; wet; (Ha[g]) SP-SM/GW/SP.	- 10.0 - 11.5 - 14.0 - 18.5 - 21.5	S	$\begin{array}{c} 3 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 9 \\ 10 \\ 11 \\ 11 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12$		5 10 15 20 25 30 35			
COMPLETED 10/9/2009 LEGEND * Sample Not Recovered ☐ Standard Penetration Test NN ⑤ 3" O.D. Thin-Walled Tube NM ⑧ Bentoni ⑦ D. Thin-Walled Tube NM ⑧ Bentoni	ite-Ceme ite Chips ite Grout Water L	ent Gro /Pellets .evel in	ut s Well			Plastic Lir N agit River Leve Skagit Cou	unty, Washing	40 60 0.075mm) ontent Liquid Limit ontent vestigation
 The stratification lines represent the approximate boundarie and the transition may be gradual. The discussion in the text of this report is necessary for a p 	es betwe	en soil	types,		une 20			-1-21199-002
the nature of the subsurface materials.								

Total Depth: _ Top Elevation: _	63.5 ft. ~	_ Northing: _ _ Easting: _	~ 531,153 ft. ~ 1,270,679 ft.		•	lethod: ompany:		ud Rota blocene	ry Drilling	Hole Diam.: Rod Diam.:	5 in. JWJ	
Vert. Datum:		Station:	~	Dril	Rig E	Equipmer			ile Truck	Hammer Type	e: Automa	atic
Horiz. Datum: _	NAD83	_ Offset: _	~	_ Oth	er Co	mments:						
subsurface materia indicated below re	ls and drilling r present the ap	proper understan methods. The st	ratification lines laries between	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.		TION RESIST		ws/fo
Medium dens			-									
SILT to silty, fi above 7.5 feet organics, trace	t, locally tra	ce of clay, tra	ace of					5	•	▲Nonstand	ard	
ML/SM.						2 \$ 3 III			▲Nor	standard		\diamond
				12.5		4		10				
Loose, brown iron-oxide stai			trace of			5		15	▲Nonsta			
Medium stiff to clayey, trace t			• •	16.0		- 6 7				standard		
faintly laminat iron-oxide stai	ns, silty fine							20		I O	- I .	
feet; (Ha[ob]) Very soft, gray	, trace to sl			22.0		9						
trace of clay; v and layers; (H		ed silty fine s	and seams			10		25	NP			
Loose to med	ium dense.	arav. aravell	v SAND.	29.0				WOH 30				
trace of silt to locally trace o	sandy GRA	VEL, trace o	f silt; wet;			12		30	\diamond			
								35				::: :::
						13						
								40				
								45				
						15		45	 ◆ ● 			· · ·
	CONTINUE	D NEXT SHEET										: : :
		LEGEND	1						0	20	40	
Ⅲ 3" O.D. Spli ⑤ 3" O.D. Thir	t Recovered t Spoon Samp n-Walled Tube enetration Tes)	Piezome Piezome Bentonite Bentonite Bentonite	e-Ceme e Chips/	nt Gro		ter		Plastic L	 ◇ % Fines (· ◆ % Water (.imit ↓ ● Natural Water (Content Liquid Lim	nit
								Ska	-	vee General Ir ounty, Washir	-	
1. Refer to KEY	for explanatio	<u>NOTES</u> n of symbols, co	<u>)</u> odes, abbreviatior	ns and c	lefinitio	ons.		LOG	OF BOF	RING DD1	7-2 Lev	ee
and the transition	n may be grad	ual.	imate boundaries					 une 20			1-1-21199-0	
the nature of the	subsurface m	aterials.	ecessary for a pro	•		•	_		-		FIG. A-	
Groundwater	level, if indicat	ted above, is for	the date specifie	d and m	ay va	ry.			NON & WIL	JUN, INC.	Sheet 1 of	11

Total Depth: Top Elevation: Vert. Datum: Horiz. Datum:	op Elevation: ~ Easting: ~ 1,270,679 ert. Datum: Station: ~					ethod: ompany: Equipmer mments:	<u>Ho</u> nt: <u>B-</u> 6		ry Drilling ile Truck	Hole Diam.: Rod Diam.: Hammer Type	5 in. JWJ Automatic
subsurface materi indicated below r	SOIL DESC eport text for a p als and drilling m epresent the app rpes, and the trans	roper understa nethods. The s proximate boun	tratification lines daries between	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.		TION RESIST. Wt. & Drop: _1 20	ANCE (blows/for 40 lbs / 30 inches 40
Medium dens fine gravel; w			ND, trace of	53.5		16		55		•	
				63.5		17		60		•	
	BOTTOM OF OMPLETED)	00.0				65 70			
								75			
								80 85			
								90			
								95			
Ⅲ 3" O.D. Sp Ⅲ 3" O.D. Th	ot Recovered lit Spoon Sampl in-Walled Tube Penetration Test		D Piezomel Bentonite Bentonite Bentonite	e-Cemer e Chips/	nt Gro	ut	ter		0 Plastic L	20	Content - Liquid Limit
			6					Ska	-	ree General Ir ounty, Washir	-
 The stratific and the transition The discuss 	ation lines repre on may be gradu ion in the text of	sent the appro ual. f this report is r	<u>S</u> odes, abbreviatior ximate boundaries necessary for a pro	s betwee	en soil	types,		L OG une 20			7-2 Levee
the nature of th	e subsurface ma	aterials.	r the date specifie						NON & WIL		FIG. A-11

Total Depth: 51.5 ft. Northing: ~ 525,350 ft. Top Elevation: ~ Easting: ~ 1,272,695 ft. Vert. Datum: Station: ~ Horiz. Datum: NAD83 Offset: ~	_ Dril _ Dril	lling C Il Rig I	lethod: ompany: Equipment: omments:	Hole		ry Drilling ile Truck	Hole Diam.: Rod Diam.: Hammer Type:	5 in. NWJ Automatic
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	(0)	Ground Water	Depth, ft.			40 lbs / 30 inches
Interbedded, very loose to loose, brown and gray, fine sandy SILT to slightly silty and silty, fine SAND; moist; iron-oxide-stained seams, laminated, slightly clayey silt layers above 5 feet; (Ha[ob]) ML/SM/SP-SM.					5			
Loose, orange-brown, slightly silty, fine to medium SAND, trace of fine gravel; wet; iron-oxide-stained; (Ha[cd]) SP-SM. Loose to medium dense, gray, trace of silt to slightly silty, trace of gravel to gravelly SAND; wet; (Ha[cd]) SP/SW-SM.	- 14.5 - 16.5		6 7 8 8		15 20		•	
			9 10		25 30		•	
			11 12		35 40	♦	•	
Soft, gray, slightly clayey to clayey SILT; wet; scattered wood fragments and scattered to numerous organics; (Ha[ob]) ML.	- 44.0		13		45			•
* Sample Not Recovered □ □ Piezome ⊥ Standard Penetration Test □ □ Bentonit ⊥ 3" O.D. Thin-Walled Tube □ □ Bentonit ↓ Ground ↓ ↓ Ground	e-Ceme e Chips e Grout	ent Gro /Pellet	S			Plastic I	20 ♦ % Fines (< ● % Water C imit ↓ ● Natural Water C	Content Liquid Limit ontent
NOTES 1. Refer to KEY for explanation of symbols, codes, abbreviatio 2. The stratification lines represent the approximate boundarie and the transition may be gradual.	s betwe	en soi	l types,		GO	Skagit Co		gton 3 Landward
 The discussion in the text of this report is necessary for a pr the nature of the subsurface materials. Groundwater level, if indicated above, is for the date specific 	•					21-1-21199-002 FIG. A-12 Sheet 1 of 2		

Total Depth: Top Elevation: Vert. Datum:	Elevation: ~ Easting: ~ 1,272,695 ft . Datum: Station: ~					ethod: ompany Equipme	: Ho		nry Drilling bile Truck	Hole Diam.: Rod Diam.: Hammer Type	5 in. NWJ Automati	ic
Horiz. Datum:	NAD83	Offset:	~		-	mments				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Refer to the rep subsurface material indicated below rep	SOIL DESCRIPTION Refer to the report text for a proper understanding of the bsurface materials and drilling methods. The stratification li dicated below represent the approximate boundaries betwee material types, and the transition may be gradual.					Samples	Ground Water	Depth, ft.		TION RESISTA Vt. & Drop: <u>1</u>	-	
	OTTOM OF	BORING 10/15/2009		51.5		14		55				
								60				
								65				
								70				
								75				
								80				
								85				
								90				
								95				
									· · · · · · · · · · · · · · · · · · ·			
	Recovered enetration Test h-Walled Tube		Piezomet Bentonite Bentonite Bentonite	e-Cemer Chips/l Grout	nt Gro Pellets	ut S	ilter		Plastic Li	20 ◇ % Fines (< ● % Water C mit Natural Water C	Content	
			▼ Ground V	valer Le	∍vei IN	vveli		Ska	agit River Lev Skagit Co	ee General In unty, Washin	-	
The stratificat and the transitior	ion lines repres n may be gradu	sent the approx al.	des, abbreviatior	betwee	en soil	types,						
the nature of the	subsurface ma	aterials.	ecessary for a pro					une 20			FIG. A-1	
			the date specified		-		Ge	eotechnic	NON & WILS	tal Consultants	Sheet 2 of 2	

Total Depth:66 Top Elevation:	Easting:	~ 1,272,702 ft.	Dril	ing Co	ethod: ompany:	Но		Drilling	Hole Diam.: Rod Diam.:		5 in. NWJ
Vert. Datum: Horiz. Datum:NAL	Station: D83 Offset:	~		-	Equipmer mments:		61 Mob	ile Truck	Hammer Type	e: <u>A</u> L	utomatic
Refer to the report tex subsurface materials and o indicated below represent	drilling methods. The	stratification lines ndaries between	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.		TION RESIST		(blows/foo 30 inches
Loose, brown, trace moist; locally trace of scattered silty clay of fine sandy silt layers SP-SM/SP.	e to slightly silty, f of gravel, trace of clasts above 5 fee s below 10 feet; (ine SAND; ^c organics, et, scattered Hf)	12.0				5	Nonstanc	andard iard		
sandy SILT; moist; iron-oxide-stained s silt layers below 15	aminated, faint eams, scattered feet; (Ha[ob]) SM	fine sandy 1/ML.	17.0		5 6 		15	▲Nonstai			
Loose, gray, silty, fi SM.	ne SAND; moist;	(Ha[ob])			7 8 9 9		20		•		
Medium dense, gra to slightly fine grave wet; (Ha[cd]) SP/SF	lly, fine to mediu		26.0		10		25 30		•		
Loose to medium do of silt and sandy GF (Ha[g]) SP/GW/SW	RAVEL, trace of s		33.5		11		35				
					13		40) 		
	NTINUED NEXT SHEET				14		45				
* Sample Not Recov ∬ 3" O.D. Split Spoor ⑤ 3" O.D. Thin-Walle ∫ Standard Penetrati	<u>LEGEN</u> rered n Sample rd Tube		e-Ceme e Chips/	nt Grou	ut	ter		Plastic L	20 ♦ % Fines (● % Water (imit ↓ ● Natural Water (Content	ť
							Ska	agit River Lev Skagit Co	ee General Ii unty, Washir	-	ation
 Refer to KEY for exp The stratification line and the transition may be and the discussion in the 	es represent the approper gradual.	codes, abbreviation oximate boundaries	s betwe	en soil	types,		_OG				_evee
 The discussion in the the nature of the subsuit. Groundwater level, it 	rface materials.							NON & WIL			A-13

Total Depth: 66 ft. Northing: ~ 525,290 ft. Top Elevation: ~ Easting: ~ 1,272,702 ft. Vert. Datum: Station: ~	_ Dril _ Dril	ling Co I Rig E	ethod: ompany: Equipme	<u>Ho</u> nt: <u>B-6</u>		<i>ry</i> Hole Dia <u>Drilling</u> Rod Dia <u>ile Truck</u> Hammer	m.:	5 in. NWJ Automatic
Horiz. Datum: <u>NAD83</u> Offset: ~	_ Oth	er Co	mments:					
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.	PENETRATION RES A Hammer Wt. & Drop 0 20		os / 30 inches
Soft to medium stiff, gray, slightly clayey to clayey SILT, trace of fine sand and SILT; wet; trace to scattered organics; (Ha[ob]) ML.	- 55.0				55 60			
BOTTOM OF BORING COMPLETED 10/14/2009	66.0		18		65			
					70 75			
					80			
					85 90			
					95			
LEGEND						0 20 0 20	4	
* Sample Not Recovered ☐ ☐ ☐ Piezome ☐ 3" O.D. Split Spoon Sample ⊠ ⊠ Bentonite ⑤ 3" O.D. Thin-Walled Tube ⊠ ⊠ Bentonite ☐ Standard Penetration Test ⊠ ☑ Bentonite	e-Ceme e Chips/	nt Gro	ut	lter		◇ % Fin ● % Wa Plastic Limit ┣── Natural W	ater Cont ●	ent iquid Limit
					Ska	agit River Levee Gene Skagit County, Wa		-
NOTES 1. Refer to KEY for explanation of symbols, codes, abbreviation 2. The stratification lines represent the approximate boundaries and the transition may be gradual.	s betwe	en soil	types,		.OG			3 Levee 21199-002
 The discussion in the text of this report is necessary for a prothe nature of the subsurface materials. Groundwater level, if indicated above, is for the date specifie USCS designation is based on visual-manual classification at the subsurface of the subsurface	d and m	nay vai	ſy.			NON & WILSON, IN al and Environmental Consulta	IC. F	IG. A-13 Sheet 2 of 2

Total Depth: Top Elevation: Vert. Datum: Horiz. Datum:	41.5 ft. ~ NAD83	~ 504,871 ft. ~ 1,268,661 ft. ~	_ Drill _ Drill	ling Co I Rig E	ethod: ompany Equipme mments	r: <u>Ho</u> ent: <u>BK</u>	id Rota locene -81 Tri	Drilling	Rod	e Diam. Diam.: nmer Ty	_		5 in. NWJ toma		
Refer to the re subsurface materia indicated below re	SOIL DESC port text for a p als and drilling n	tratification lines daries between	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.	PENETRA ▲ Hammer			140		•	ws/foo ches 6	
Loose, gray-k scattered roo			moist;			1	1/5/2009 i▲			•					
Very loose to to medium S/ above 7 feet;	AND; wet; tra	ace of organ		4.5		2]	11/5/	5 10	Nonstan	dard	•	×			
Loose to mee silty, fine to m				17.0		5 6 7		15			•				
SP/SP-SM. Loose, gray, t trace of silt; w	-		SAND,	23.0		8 9		20 25			•				
Loose, gray, (Ha[g]) GW.	sandy GRA	/EL, trace o	f silt; wet;	33.0		10		30 35		•					
Medium dens SAND; wet; r _ SM.	umerous sh	ell fragment		38.0 41.5		11 12		40							
	3OTTOM OF OMPLETED)					45							
Standard F	nt Recovered renetration Test it Spoon Samp		D □ H □ Piezome N N Bentonite N N Bentonite D N Bentonite V Ground N	e-Ceme e Chips/ e Grout	nt Grou Pellets	ut S	ilter		0		Fines Wate	6 (<0.0			(
		NOTE	\$					Ska	agit River Lev Skagit Co				-	tion	
2. The stratification and the transition	ition lines repre	esent the appro ual.	odes, abbreviatior ximate boundaries	s betwe	en soil	types,)G C une 20		IG I	DD2	2-1 21-1			
 The discussion in the text of this report is necessary for a prop the nature of the subsurface materials. Groundwater level, if indicated above, is for the date specified 									NON & WIL	<u>eon</u>				. A-'	

· _ · · · · · · · · · · · · · · · · · ·	~ 504,876 ft. ~ 1,268,717 ft.		ling Method: ling Company:		l Rotai ocene	y Hole Diam. Drilling Rod Diam.	
Vert. Datum: Station:	~	Dril	I Rig Equipment		81 Tru	<u> </u>	
Horiz. Datum: <u>NAD83</u> Offset:	~	Oth	er Comments:				
SOIL DESCRIPTION Refer to the report text for a proper understanc subsurface materials and drilling methods. The stra indicated below represent the approximate bounde material types, and the transition may be gr	atification lines aries between	Depth, ft.	Symbol Samples	Ground Water	Depth, ft.	PENETRATION RESIS A Hammer Wt. & Drop: 0 20	
Medium dense, brown, slightly clayey, g silty SAND; moist; (Hf) SM.							
Medium dense, gray-brown, silty, sand GRAVEL, trace of clay; moist; scattered \clayey pockets; (Hf) GM.	y d oliabtly	4.5 7.0			5		lonstandard
Loose, gray-brown, silty, fine SAND; w	et; (Hf)	9.5			10	<u> </u>	
Loose, brown, fine sandy SILT to silty, SAND; moist; clayey silt pockets, intern scattered roots above 13 feet; (Hf) ML/	nixed,	15.0	5		15		
Loose, gray-brown, silty, fine SAND; m laminated, iron-oxide-stained seams, so silt layers; (Ha[ob]) SM.	cattered	19.5				•	
Loose, gray-brown, silty, fine SAND; we strongly iron-oxide-stained layers; (Ha[et; ob]) SM.	23.0			20		
Loose, gray, silty, fine to medium SANI (Ha[ob]) SM.	D; wet;		9		25		
Medium dense, gray, trace to slightly si medium SAND, trace of fine gravel; we (Ha[cd]) SP/SP-SM.	Ity, fine to	28.0	10		30		
					35		
Loose to medium dense, gray, fine grav		43.0					
SAND, trace of silt; wet; (Ha[g]) SP/SW	-		13		45	•	
CONTINUED NEXT SHEET							
★ Sample Not Recovered □ ↓ 3" O.D. Split Spoon Sample □ ↓ Standard Penetration Test □ ↓ 3" O.D. Thin-Walled Tube □	Piezomete Bentonite Bentonite Bentonite	Ceme Chips/		er.			40 60 6 (<0.075mm) er Content
					Ska	git River Levee Genera Skagit County, Was	-
NOTES 1. Refer to KEY for explanation of symbols, coc 2. The stratification lines represent the approximand the transition may be gradual	des, abbreviations				OG	of Boring Di	022-1 Levee
and the transition may be gradual.The discussion in the text of this report is negative of the subsurface materials.	cessary for a prop	ber un	derstanding of	Ju	ne 20	10	21-1-21199-002
the nature of the subsurface materials.						ION & WILSON, INC al and Environmental Consultants	. FIG. A-15

Total Depth: Top Elevation Vert. Datum: Horiz. Datum		~ 504,876 ft. ~ 1,268,717 ft. ~	_ Drill Drill	ling Co I Rig E	ethod: ompany Equipme mments	: <u>H</u> ent: <u>B</u>	lud Rota Iolocene K-81 Tru	Drilling	Hole Diam.: Rod Diam.: Hammer Type	5 in. NWJ Automatic	
subsurface ma indicated belo	SOIL DESC e report text for a j terials and drilling i w represent the ap I types, and the tra	proper understai methods. The sign proximate bound	ratification lines daries between	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.		TION RESISTA Wt. & Drop: <u>1</u>	NCE (blows/foot) 40 lbs / 30 inches 40 60
	ense, gray, silty ce of clay; wet; (He) SM.			53.0		14		55			
	BOTTOM O	e of shell fra	gments;	61.5		16		60		•	
	COMPLETED	0 10/22/2009						65			
								70			
								75 80			
								85			
								90			
								95			
	Not Recovered	LEGENI	<u>)</u> ⊡⊞⊡ Piezome ⊠⊡⊠ Bentonite				ilter		0	20 ◇ % Fines (< ● % Water C	40 60 0.075mm)
	d Penetration Tes Thin-Walled Tube		Bentonita		Pellets	5		Ska	-	vee General In punty, Washin	-
1. Refer to	KEY for explanatic ification lines represition may be grac	esent the approx	des, abbreviation						OF BOF	RING DD2	2-1 Levee
the nature o 4. Groundw	ussion in the text of f the subsurface n ater level, if indica	naterials. ted above, is for	the date specifie	d and m	nay var	ry.		June 20 SHANN Geotechnic	010 NON & WIL al and Environme		FIG. A-15 Sheet 2 of 2

Total Depth: 42.5 ft. Northing: ~ 502,793 ft. Top Elevation: ~ Easting: ~ 1,259,501 ft. Vert. Datum: Station: ~ Horiz. Datum: Offset: ~	Drill Drill	ling Co I Rig E	ethod: ompany Equipme mments	r: <u> </u>	/lud Rota Holocene 3K-81 Tri	Drilling	Hole Diam.: Rod Diam.: Hammer Type:	5 in. NWJ Automatic	
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground	Depth, ft.		TION RESISTAN Wt. & Drop: <u>140</u> 20	. ,	
Very loose, gray and brown, slightly fine sandy to fine sandy SILT, trace of clay to soft, slightly clayey SILT; wet; scattered iron-oxide-stained seams, peat seam at 5.9 feet, numerous wood fragments and coarse organics below 6 feet, laminated; (Ha[ob]) ML.				11/4/2009 A	5	▲::::::		• • •	
Very loose, gray, silty, fine SAND; wet; laminated, scattered organics; (Ha[ob]) SM.	9.0				10		• •		
Loose to medium dense, gray, fine to medium SAND, trace of silt and fine gravel; wet; trace of organics; (Ha[cd]) SP.	- 12.0		5 5 6 7 8		15		•		
			9 10		25	\diamond	•		
	- 35.0				30 35		•		
Loose, gray, silty, fine SAND to fine sandy SILT; wet; scattered fine organics, laminated, scattered slightly clayey to clayey seams, slightly silty, fine sand below 41.5 feet; (Ha[ob]) SM/ML.			12 13		40			•	
BOTTOM OF BORING COMPLETED 10/22/2009	- 42.5	<u>, 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</u>			45				
S 3" O.D. Thin-Walled Tube Bentonit Image: Constraint of the second sec	te-Ceme te Chips/	nt Gro Pellets	ut S	ilter	Ska	Plastic L agit River Lev	20 ◇ % Fines (<0. ● % Water Co imit I → ● ↓ Natural Water Con vee General Inve	ntent Liquid Limit ntent estigation	
<u>NOTES</u> 1. Refer to KEY for explanation of symbols, codes, abbreviatio 2. The stratification lines represent the approximate boundarie and the transition may be gradual.						FBORIN		Landward	
3. The discussion in the text of this report is necessary for a pi	proper understanding of			June 2010			21-1-21199-002		

Total Depth: <u>61.5 ft.</u> Top Elevation: ~ Vert. Datum:	Northing: _ Easting: _ Station:	~ 502,860 ft. ~ 1,259,493 ft. ~	Dril	ing Co	ethod: ompany: Equipmer	Но	d Rota locene -81 Tru	Drilling	Hole Diam.: Rod Diam.: Hammer Type	5 in. NW. Autom	J
Horiz. Datum: NAD83	Offset:	~		•	mments:		07 110				ano
SOIL DES Refer to the report text for a subsurface materials and drilling indicated below represent the a material types, and the ti	methods. The si	ratification lines daries between	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.		TION RESISTA Nt. & Drop: <u>1</u>	(ws/foo
Stiff, brown and gray, slig sandy, silty CLAY; moist iron-oxide-stained pocket sand pockets, trace of ro Medium dense, brown, f moist; intermixed, locally iron-oxide stains; (Hf) SM Loose to medium dense SAND; moist; fine sandy feet, locally trace of grav Soft, brown, slightly fine of organics, scattered sil layers, trace of iron-oxid Medium stiff, gray, claye sand; wet; trace of organ iron-oxide-stained seam organic-rich partings, sca sandy silt seams; (Ha[ot Very loose to loose, gray to medium SAND; wet; r	ghtly fine grav ; trace of bots; (Hf) CL. ine gravelly, s trace of clay, <i>A</i> . , brown, silty, silt layers be el; (Hf) SM. sandy SILT; v ty, fine sand s e staining; (H y SILT, trace nics, laminate s, scattered d attered slighth b]) ML. v, slightly silty numerous org	relly, clayey iilty SAND; trace of fine low 12 wet; trace seams and a[ob]) ML. of fine d, ark brown, y fine to silty, fine janics,	- 4.5 - 7.0 - 14.5 - 18.5 - 23.0		$1] \\ 2] \\ 2] \\ 3] \\ 4] \\ 6] \\ 7 \\ 5] \\ 6] \\ 7 \\ 8] \\ 9] \\ 10]$		5 10 15 20 25 30		20 Nonstandard		
Medium dense, gray, slig fine gravel; wet; (Ha[cd])		ID, trace of	33.0		11		35 40		•		
- Scattered large wood seams at 45 feet.	fragments and	d silty clay	48.0		13		45		•		
 * Sample Not Recovered ∑ Standard Penetration Te Ⅲ 3" O.D. Split Spoon Sam ∬ 3" O.D. Thin-Walled Tub 	ple		e-Ceme e Chips/	nt Gro		iter		Plastic L	20 ♦ % Fines (< ● % Water C imit Natural Water C	Content Liquid Lin ontent	
 Refer to KEY for explanati The stratification lines reprand the transition may be grained 	resent the approx	des, abbreviation						Skagit Co	vee General In ounty, Washin RING DD2	gton	
 The discussion in the text the nature of the subsurface in 	of this report is n	ecessary for a pro	oper un	dersta	nding of	Ju	une 20	010	2^	I-1-21199-	002
the nature of the subsurface i	naterials.									FIG. A	

Total Depth: _ Top Elevation: _ Vert. Datum:	61.5 ft. ~	_ Northing: _ _ Easting: _ Station:	~ 502,860 ft. ~ 1,259,493 ft. ~	Drill	ing Co	lethod: ompany Equipme	H	ud Rota olocene K-81 Tru	Drilling	_ Hole Diam.: _ Rod Diam.: Hammer Ty		5 in. NWJ Automatic	
Horiz. Datum:	NAD83	Offset:	~	Oth	er Co	mments	:			_			
Refer to the rep subsurface material indicated below rep	s and drilling n present the ap	proper understain methods. The st	tratification lines daries between	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.		ATION RESIS r Wt. & Drop: 20		s / 30 inche	
Medium dense	e, gray, trac	e to slightly	silty, fine to			. 14			0		40		
medium SANI	D; wet; (Ha	[cd]) SP-SM	/SP.							/			
						· ·		55		/_			
						15				1			
									·····				
- Trace of wo	od fragmen	its at 60 feet		61.5		16		60		•			
	BOTTOM OF BORING COMPLETED 10/23/2009												
	WPLETED	10/23/2009						65	· · · · · · · · · · · · · · · · · · ·				
								70	· · · · · · · · · ·				
								75					
								-					
								80					
								85					
								90					
								95					
									0	20	40	<u></u>)	
* Sample Not	Recovered	LEGEND	<u>)</u> EH: Piezome	ter Scre	en and	d Sand F	ilter			♦ % Fines			
	enetration Test		Bentonite						Plastic	● % Water Limit ┣━━	— Lie	quid Limit	
	-Walled Tube		Bentonite			5				Natural Water	Conte	nt	
								Qka	ait Pivor L	evee General	Invest	ination	
								She	-	County, Wash		-	
		NOTE	S						-				
	-	n of symbols, co	odes, abbreviation					LOG	OF BO	RING DD	22-2	Levee	
The stratificat and the transitior			ximate boundaries	s betwe	en soil	types,							
 The discussion in the text of this report is necessary for a propute nature of the subsurface materials. 					dersta	nding of	June 2010 21-				21-1-21199-002		
the nature of the	subsurface m	aterials.										IG. A-17	

SHANNON & WILSON, INC.

.

APPENDIX B

HYDROGEOLOGIC FIELD TEST RESULTS

•

APPENDIX B

HYDROGEOLOGIC FIELD TEST RESULTS

TABLE OF CONTENTS

TABLES

B-1	Slug Test Results on Landward Wells (2 pages)
B-2	Falling Head Percolation Test Results on Levee Wells

FIGURES

B-1	Falling Head Slug Tests Observation Well DD1-1Landward
B-2	Rising Head Slug Tests Observation Well DD1-1Landward
B-3	Falling Head Slug Tests Observation Well DD1-2Landward
B-4	Rising Head Slug Tests Observation Well DD1-2Landward
B-5	Falling Head Slug Tests Observation Well DD3-1Landward
B-6	Rising Head Slug Tests Observation Well DD3-1Landward
B- 7	Falling Head Slug Tests Observation Well DD17-1Landward
B-8	Rising Head Slug Tests Observation Well DD17-1Landward
B-9	Falling Head Slug Tests Observation Well DD17-2Landward
B-10	Rising Head Slug Tests Observation Well DD17-2Landward
B- 11	Falling Head Slug Tests Observation Well DD17-3Landward
B-12	Rising Head Slug Tests Observation Well DD17-3Landward
B-13	Falling Head Slug Tests Observation Well DD22-1Landward
B- 14	Rising Head Slug Tests Observation Well DD22-1Landward
B-15	Falling Head Slug Tests Observation Well DD22-2Landward
B-16	Rising Head Slug Tests Observation Well DD22-2Landward
B-17	Falling Head Percolation Tests Observation Well DD1-1Levee
B-1 8	Falling Head Percolation Tests Observation Well DD1-2Levee
B-19	Falling Head Percolation Tests Observation Well DD3-1Levee
B-20	Falling Head Percolation Tests Observation Well DD17-1Levee
B-21	Falling Head Percolation Tests Observation Well DD17-2Levee
B-22	Falling Head Percolation Tests Observation Well DD17-3Levee
B-23	Falling Head Percolation Tests Observation Well DD22-1Levee
B-24	Falling Head Percolation Tests Observation Well DD22-2Levee
B-25	Hourly Groundwater Data (No Water in Levee) DD1-1Levee
B-26	Hourly Groundwater Data DD1-1Landward
B-27	Hourly Groundwater Data (No Water in Levee) DD1-2Levee
B-28	Hourly Groundwater Data DD1-2Landward

TABLE OF CONTENTS (cont.)

FIGURES (cont.)

- B-29 Hourly Groundwater Data (Water Seepage in Levee) DD3-1Levee
- B-30 Hourly Groundwater Data DD3-1Landward
- B-31 Hourly Groundwater Data (No Water in Levee) DD17-1Levee
- B-32 Hourly Groundwater Data DD17-1Landward
- B-33 Hourly Groundwater Data (No Water in Levee) DD17-2Levee
- B-34 Hourly Groundwater Data (Water Seepage in Levee) DD17-3Levee
- B-35 Hourly Groundwater Data DD17-3Landward
- B-36 Hourly Groundwater Data (No Water in Levee) DD22-1Levee
- B-37 Hourly Groundwater Data DD22-1Landward
- B-38 Hourly Groundwater Data (Water Seepage in Levee) DD22-2Levee
- B-39 Hourly Groundwater Data DD22-2Landward

TABLE B-1: SLUG TEST RESULTS ON LANDWARD WELLS SHANNON WILSON, INC

Monitoring			Hydraulic Conductivity	Hydraulic Conductivity
Well	Date	Slug Test Type	K	K
Designation	Tested	and Number	(ft/day)	(cm/sec)
0	11/5/09	Falling Head Test 1	35	1.2E-02
	11/5/09	Falling Head Test 2	18	6.5E-03
	11/5/09	Falling Head Test 3	25	8.8E-03
DD1-1Landward	11/5/09	Rising Head Test 1	24	8.3E-03
	11/5/09	Rising Head Test 2	15	5.3E-03
	11/5/09	Rising Head Test 3	72	2.5E-02
		Geomean	27	9.6E-03
	11/5/09	Falling Head Test 1	20	7.2E-03
	11/5/09	Falling Head Test 2	31	1.1E-02
	11/5/09	Falling Head Test 3	32	1.1E-02
DD1-2Landward	11/5/09	Rising Head Test 1	42	1.5E-02
	11/5/09	Rising Head Test 2	33	1.2E-02
	11/5/09	Rising Head Test 3	29	1.0E-02
		Geomean	30	1.1E-02
	11/5/09	Falling Head Test 1	30	1.1E-02
	11/5/09	Falling Head Test 2	27	9.6E-03
DD3-1Landward	11/5/09	Falling Head Test 3	35	1.2E-02
DD3-1Landward	11/5/09	Rising Head Test 1	28	9.9E-03
	11/5/09	Rising Head Test 2	33	1.2E-02
	11/5/09	Rising Head Test 3	45	1.6E-02
		Geomean	33	1.1E-02
	11/4/09	Falling Head Test 1	14	4.8E-03
	11/4/09	Falling Head Test 2	8	2.7E-03
DD17-1Landward	11/4/09	Falling Head Test 3	10	3.6E-03
DD1/-1Laliuwalu	11/4/09	Rising Head Test 1	50	1.8E-02
	11/4/09	Rising Head Test 2	14	4.8E-03
	11/4/09	Rising Head Test 3	41	1.5E-02
		Geomean	18	6.2E-03
	11/4/09	Falling Head Test 1	27	9.5E-03
	11/4/09	Falling Head Test 2	25	8.7E-03
DD17-2Landward	11/4/09	Falling Head Test 3	27	9.5E-03
DD1/-2Landward	11/4/09	Rising Head Test 1	25	9.0E-03
	11/4/09	Rising Head Test 2	21	7.4E-03
	11/4/09	Rising Head Test 3	28	1.0E-02
		Geomean	25	9.0E-03

TABLE B-1: SLUG TEST RESULTS ON LANDWARD WELLS SHANN

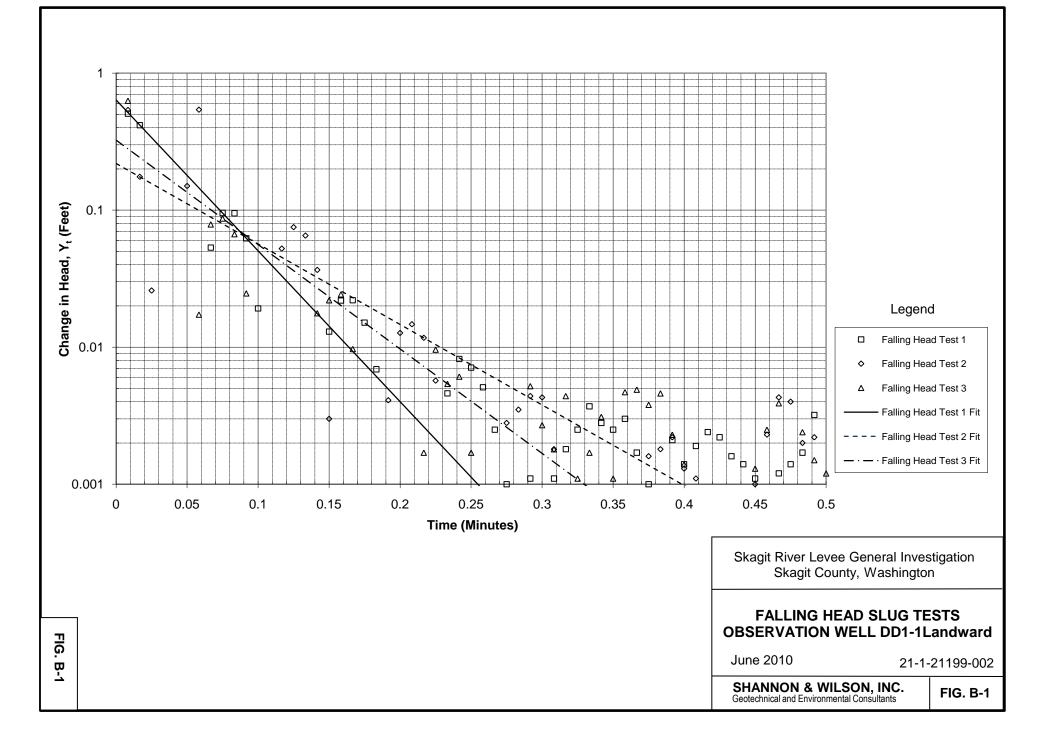
SHANNON WILSON, INC

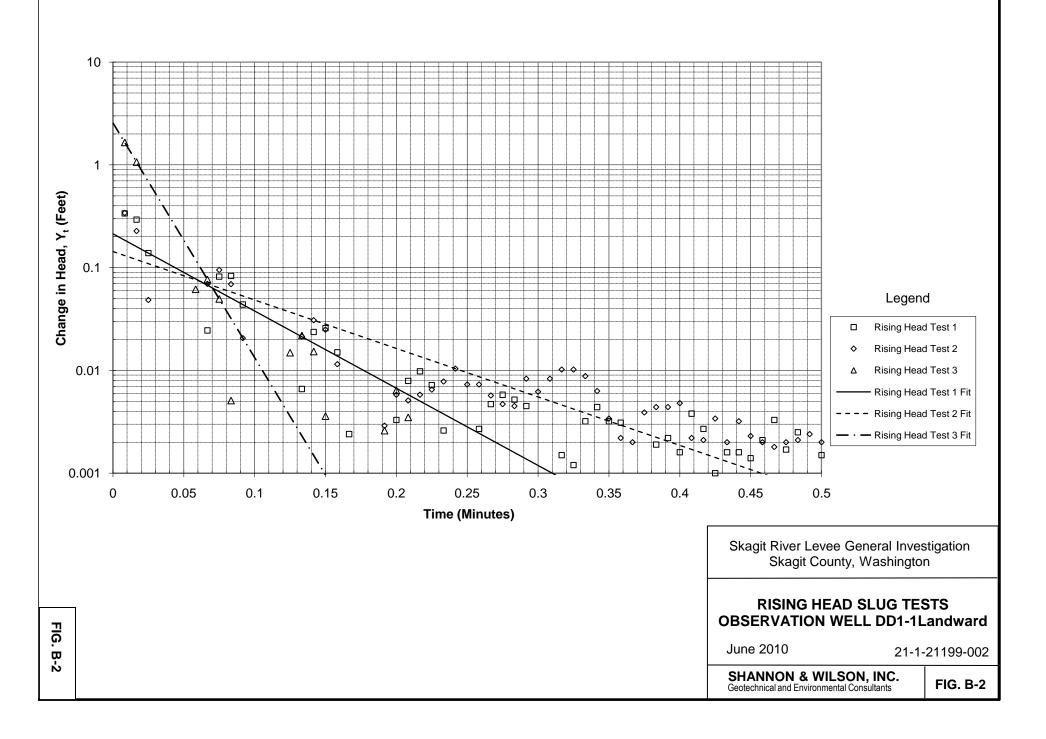
Monitoring			Hydraulic Conductivity	Hydraulic Conductivity
Well	Date	Slug Test Type	K	К
Designation	Tested	and Number	(ft/day)	(cm/sec)
	11/5/09	Falling Head Test 1	55	2.0E-02
	11/5/09	Falling Head Test 2	58	2.0E-02
DD17-3Landward	11/5/09	Falling Head Test 3	70	2.5E-02
DD17-3Landward	11/5/09	Rising Head Test 1	62	2.2E-02
	11/5/09	Rising Head Test 2	57	2.0E-02
	11/5/09	Rising Head Test 3	55	1.9E-02
		Geomean	59	2.1E-02
	11/5/09	Falling Head Test 1	29	1.0E-02
	11/5/09	Falling Head Test 2	29	1.0E-02
DD22-1Landward	11/5/09	Falling Head Test 3	26	9.1E-03
DD22-1Landward	11/5/09	Rising Head Test 1	25	8.7E-03
	11/5/09	Rising Head Test 2	27	9.4E-03
	11/5/09	Rising Head Test 3	26	9.3E-03
		Geomean	27	9.5E-03
	11/5/09	Falling Head Test 1	29	1.0E-02
	11/5/09	Falling Head Test 2	27	9.4E-03
DD22-2Landward	11/5/09	Falling Head Test 3	34	1.2E-02
DD22-2Danawalu	11/5/09	Rising Head Test 1	36	1.3E-02
	11/5/09	Rising Head Test 2	30	1.0E-02
	11/5/09	Rising Head Test 3	30	1.1E-02
		Geomean	31	1.1E-02

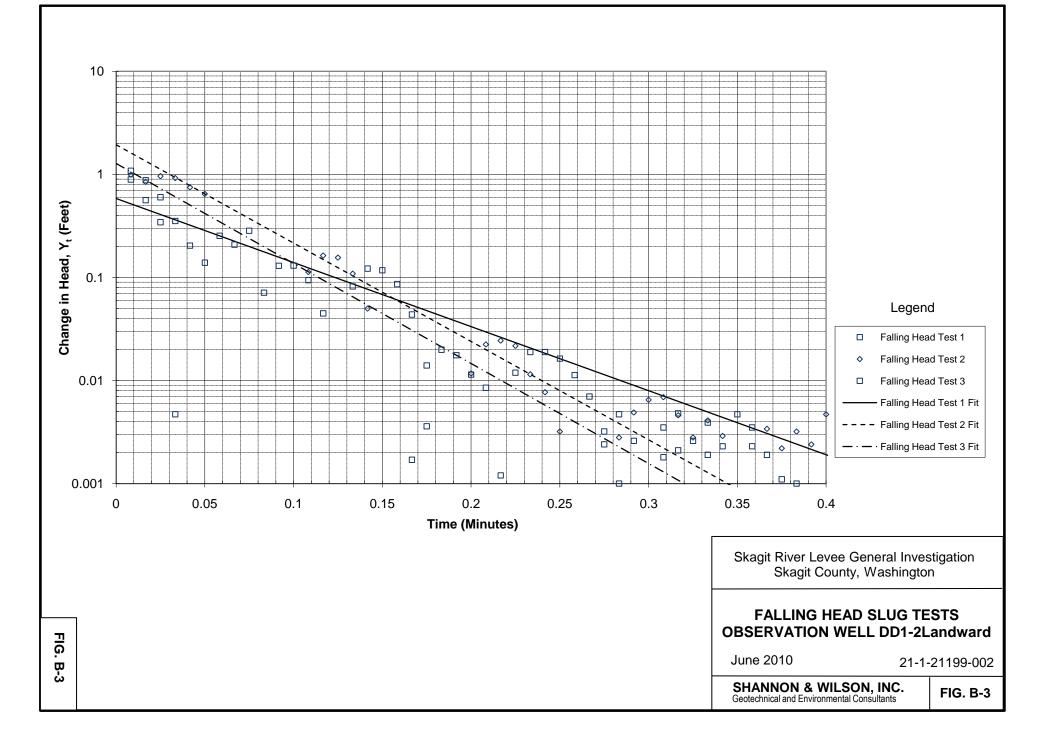
ft/day = feet per day

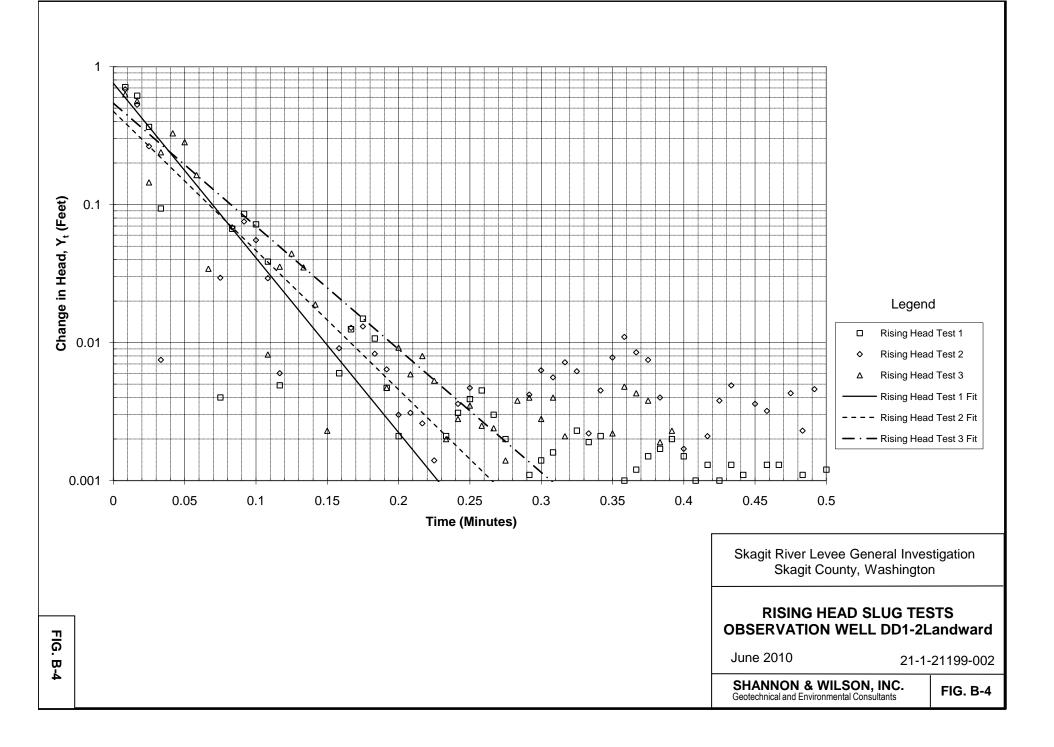
cm/sec = centimeters per second

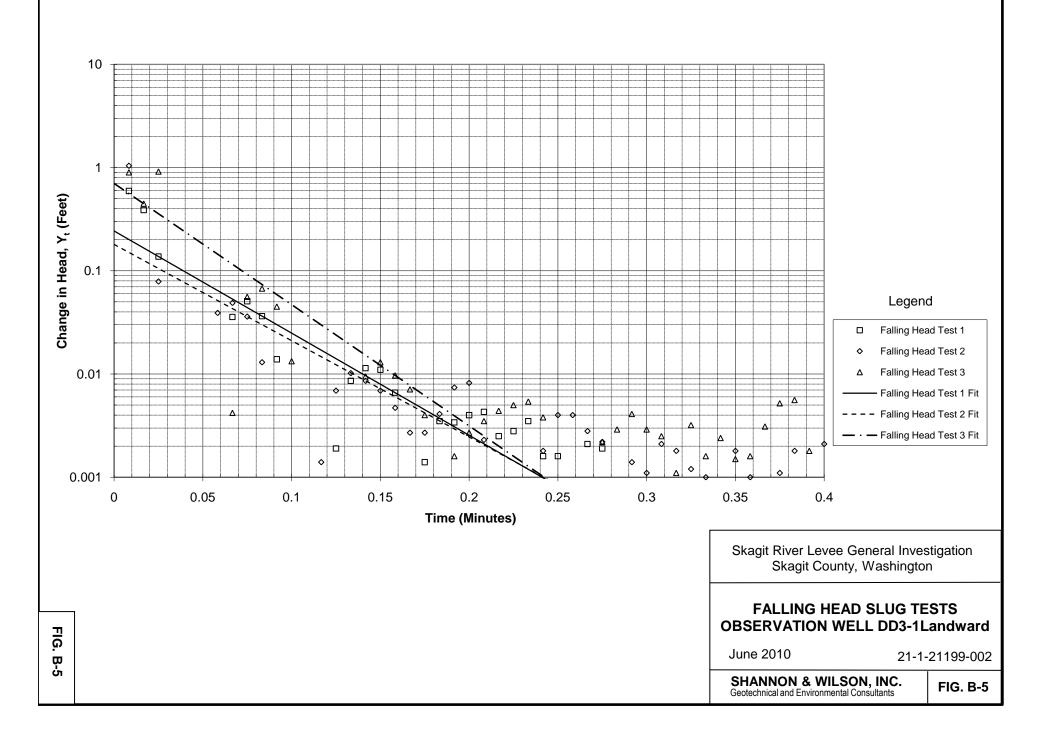
A geometric mean (geomean) is the n-th root of the product of n numbers. Unlike an arithmetic mean, it tends to dampen the effect of very high or low values, which might bias the mean if an arithmetic mean were calculated.

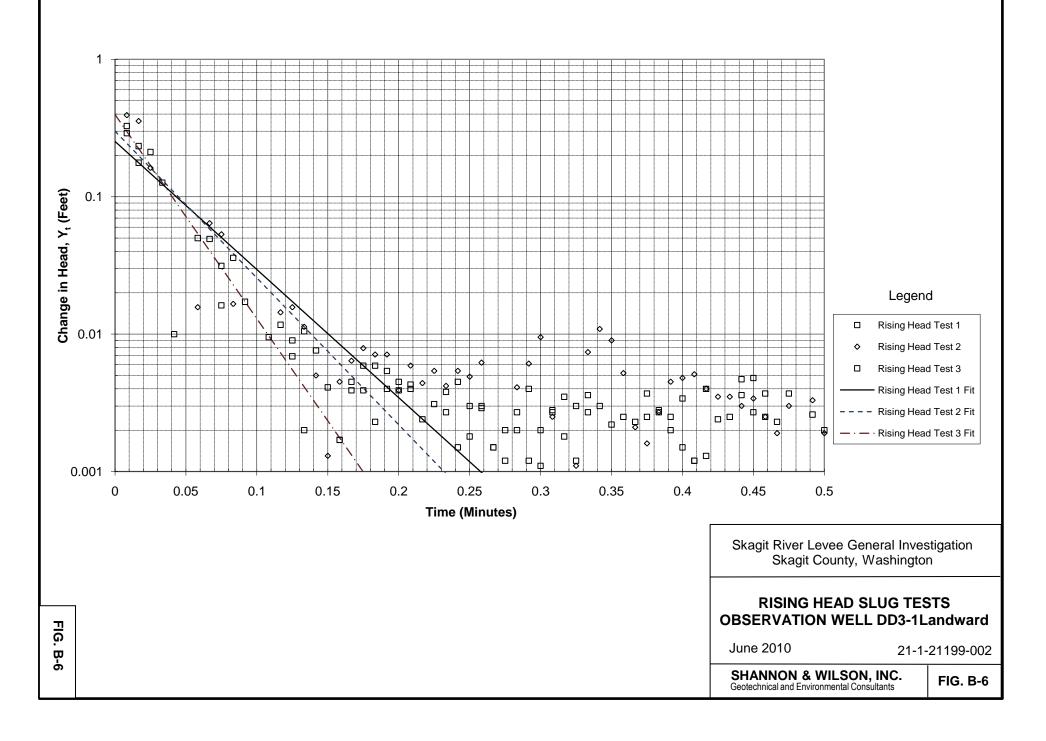

N 1			Hydraulic	Hydraulic
Monitoring			Conductivity	Conductivity
Well	Date	Fit Line		
Designation	Tested	Number		
Symbol			K	K
(unit)			(ft/day)	(cm/sec)
DD1-1Levee	3/11/10	Falling Head Test 1	0.00	2.60E-07
BBT ILLOW	3/12/10	Falling Head Test 2	0.00	9.17E-08
		Geomean	0.00	1.54E-07
		ľ		1
DD1-2Levee	3/11/10	Falling Head Test 1	0.00	6.96E-07
	3/12/10	Falling Head Test 2	0.00	7.89E-08
		Geomean	0.00	2.34E-07
DD3-1Levee	3/11/10	Falling Head Test 1	0.01	2.53E-06
	3/12/10	Falling Head Test 2	0.00	4.00E-07
		Geomean	0.00	1.01E-06
DD17-1Levee	3/11/10	Falling Head Test 1	0.00	2.32E-07
	3/12/10	Falling Head Test 2	0.00	1.26E-07
		Geomean	0.00	1.71E-07
	12/20/00	Fit line 1	0.22	1.08E-04
DD17-2Levee	12/29/09 12/29/09	Fit line 1 Fit line 2	0.32	9.50E-05
	12/29/09	Fit line 2 Geomean	0.27	9.50E-05 1.06E-04
		Geomean	0.50	1.00E-04
	3/11/10	Falling Head Test 1	0.02	7.79E-06
DD17-3Levee	3/12/10	Falling Head Test 2	0.02	9.72E-06
	3/12/10	Geomean	0.03	8.70E-06
		Geomean		01102 00
	3/11/10	Falling Head Test 1	0.00	6.32E-07
DD22-1Levee	3/12/10	Falling Head Test 2	0.00	2.17E-07
110,00	3/12/10	Falling Head Test 2 Fit 2	0.00	5.02E-07
	5/12/10	Geomean	0.00	3.70E-07
		Stomtun		
DD22-2Levee	3/11/10	Falling Head Test 1	0.00	1.03E-06
	3/12/10	Falling Head Test 2	0.00	4.91E-07
		Geomean	0.00	7.10E-07

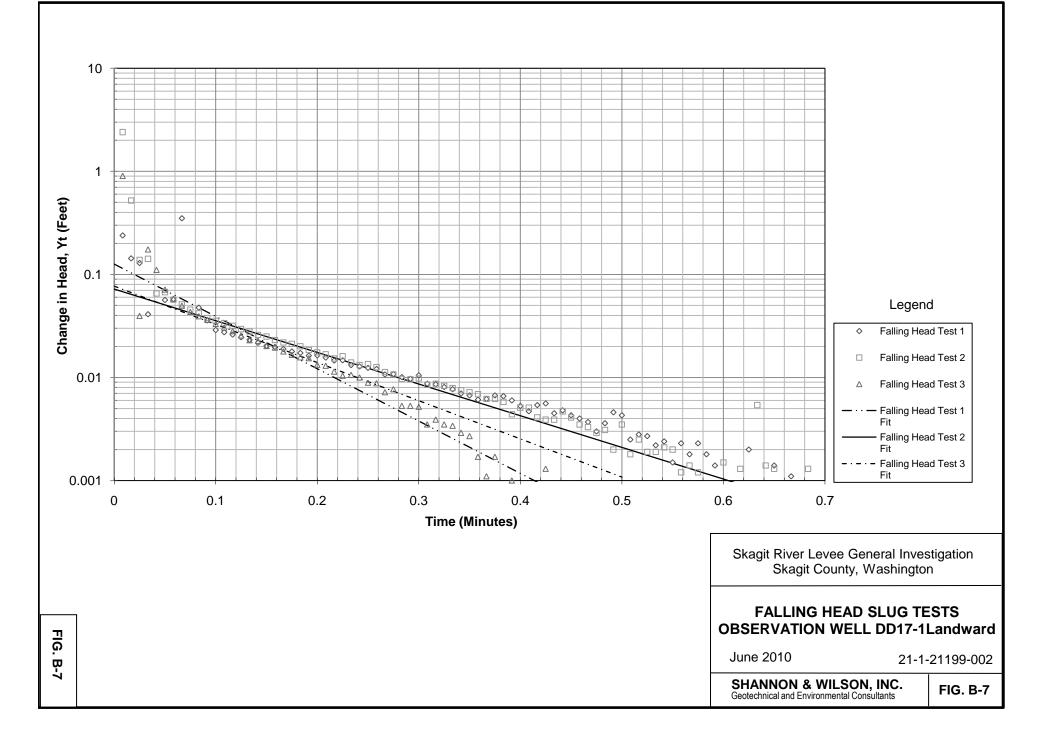

ft/day = feet per day

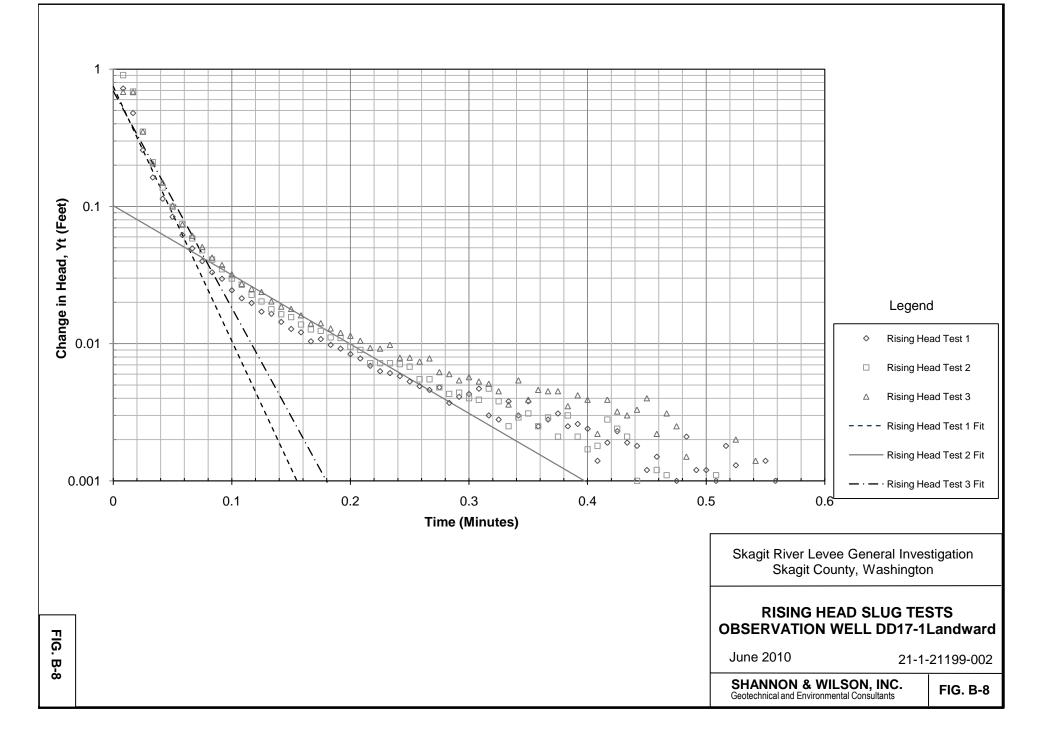

cm/sec = centimeters per second

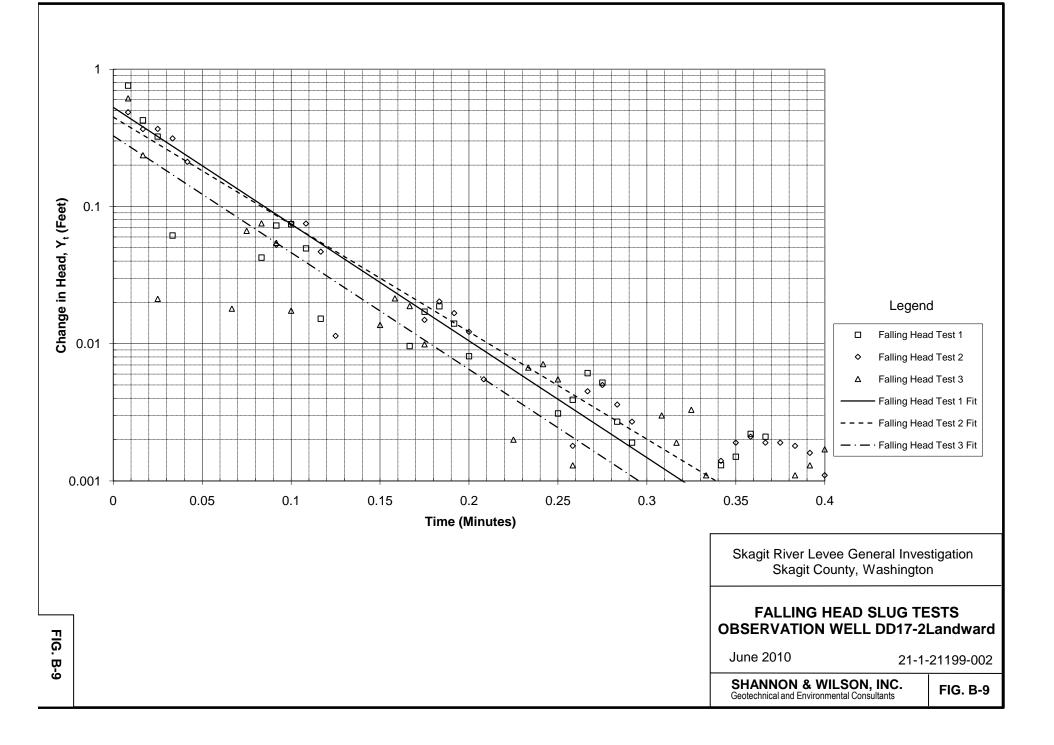

A geometric mean (geomean) is the n-th root of the product of n numbers. Unlike an arithmetic mean, it tends

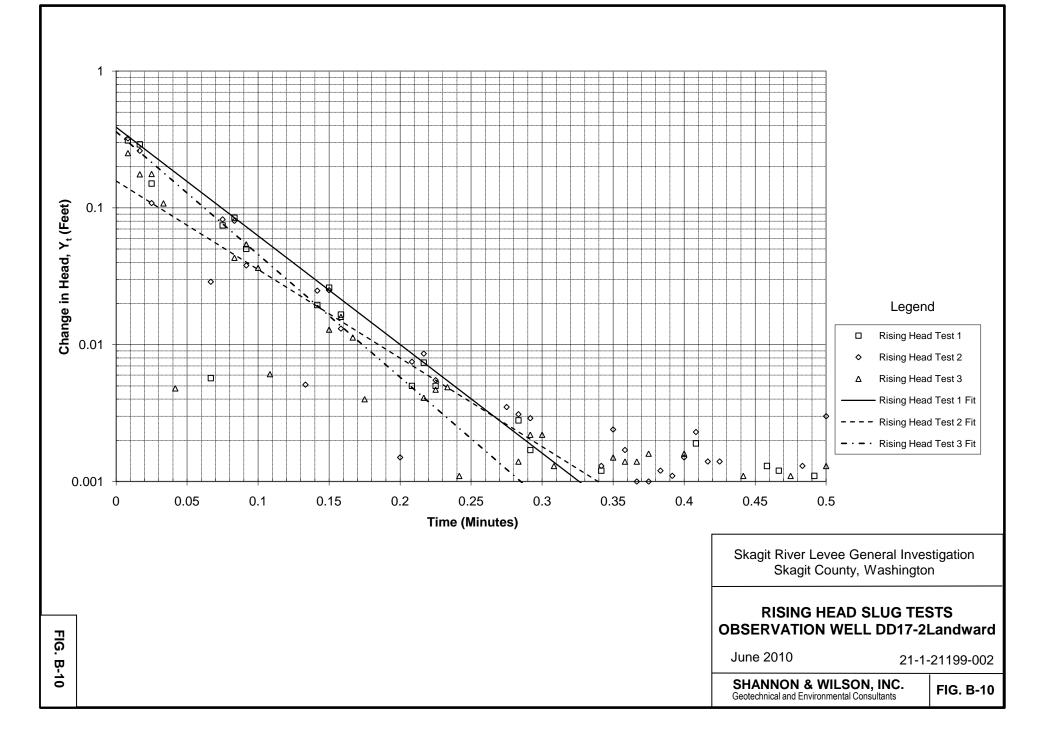

to dampen the effect of very high or low values, which might bias the mean if an arithmetic mean were calculated.

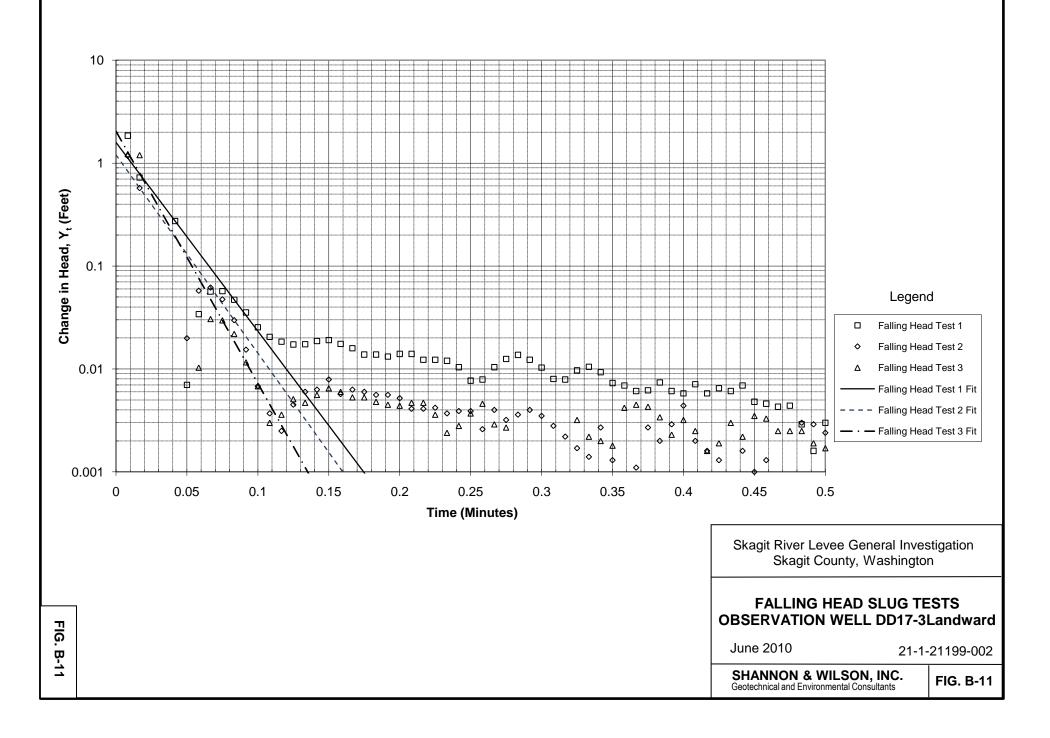


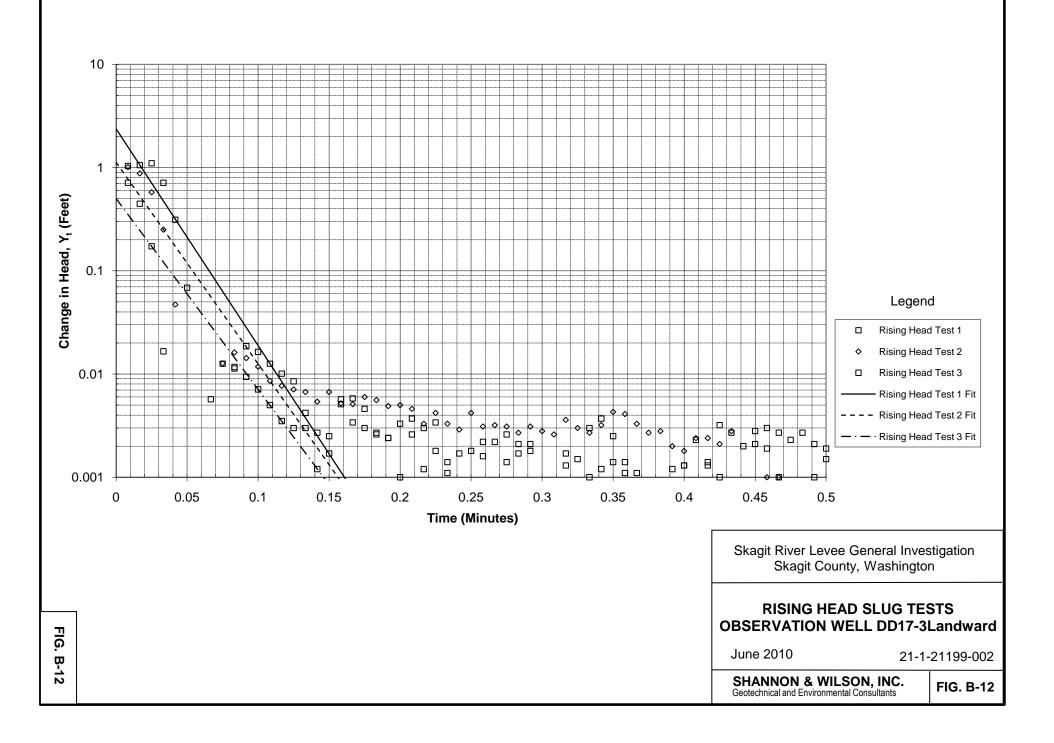


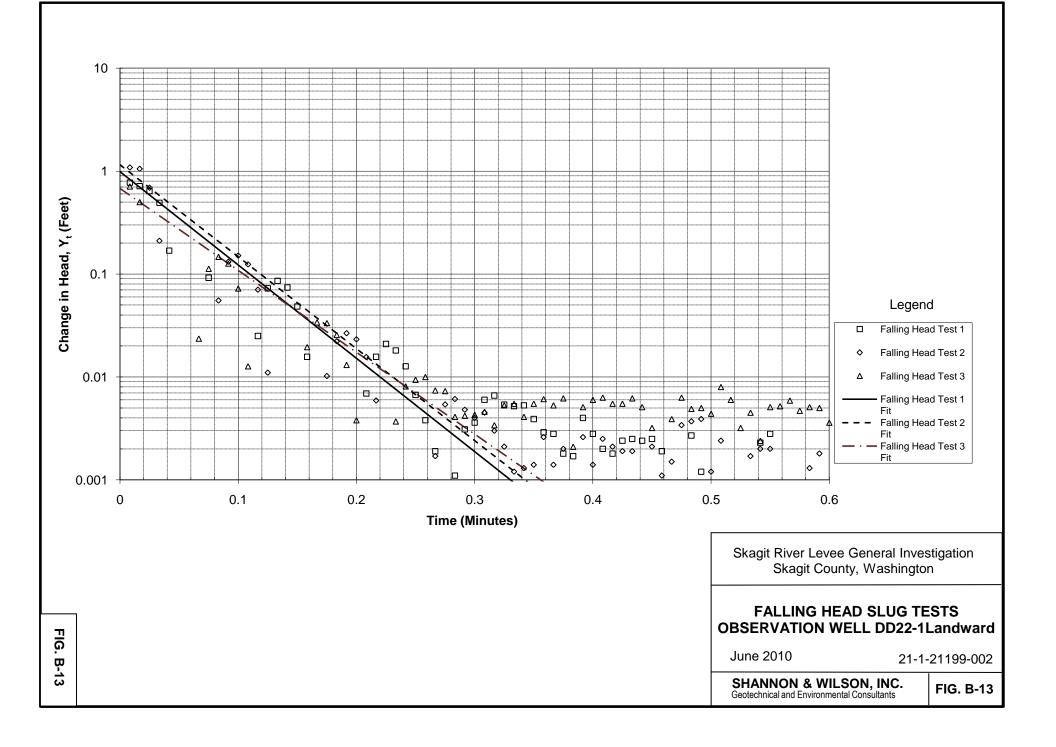


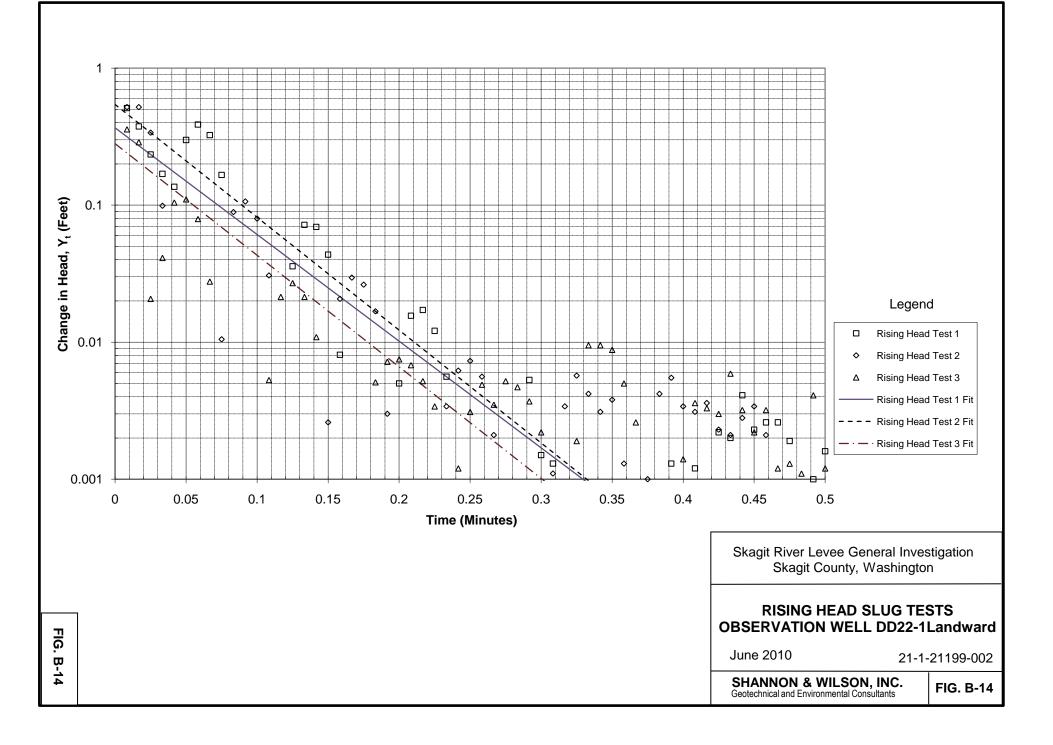


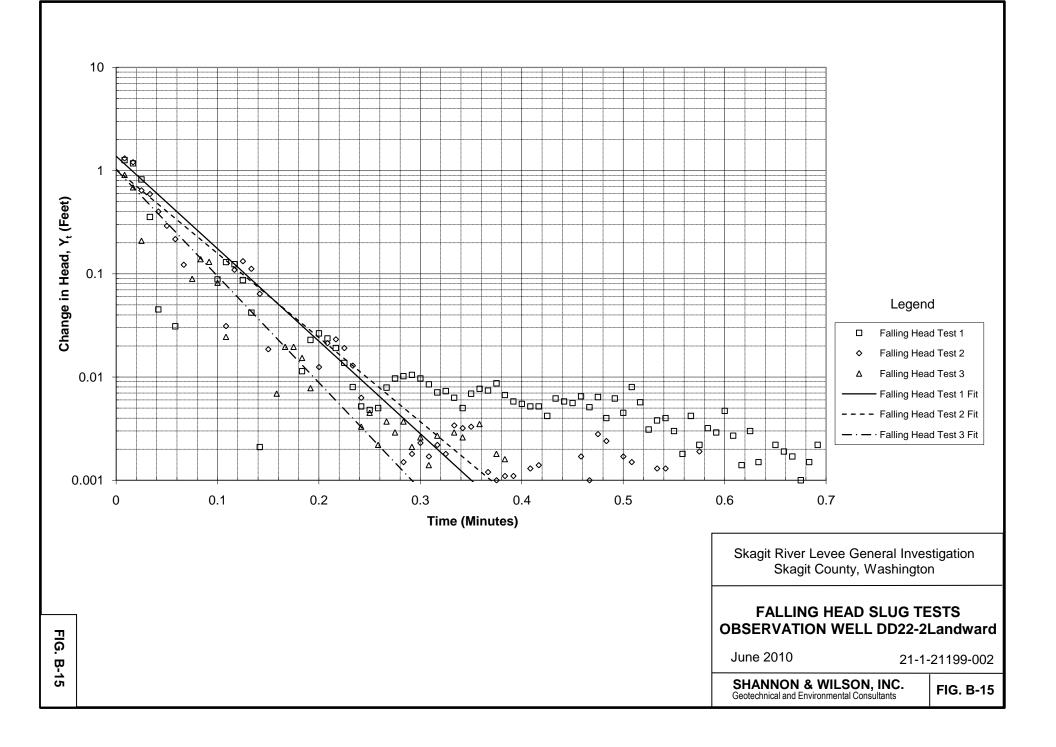


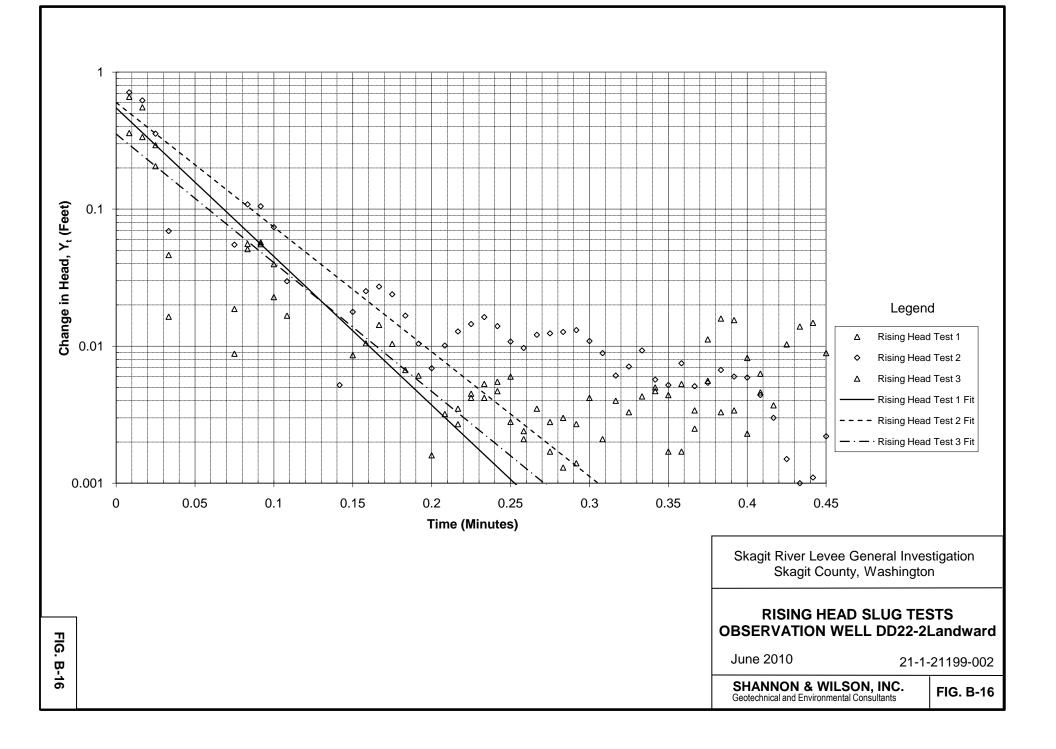


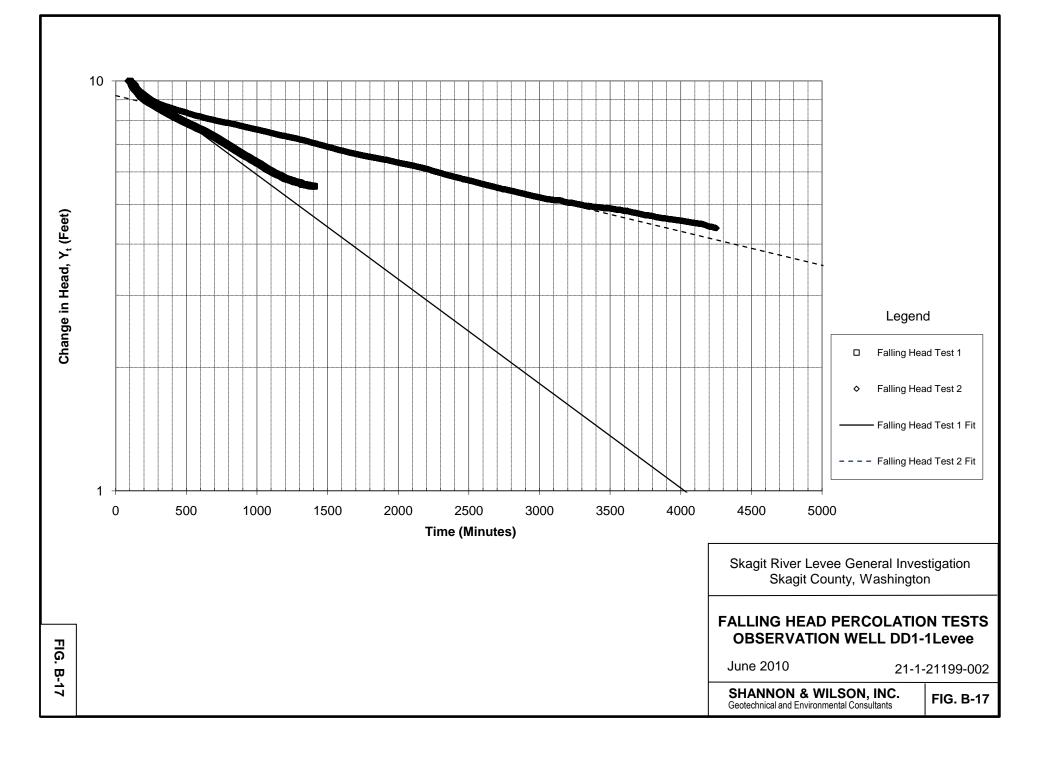


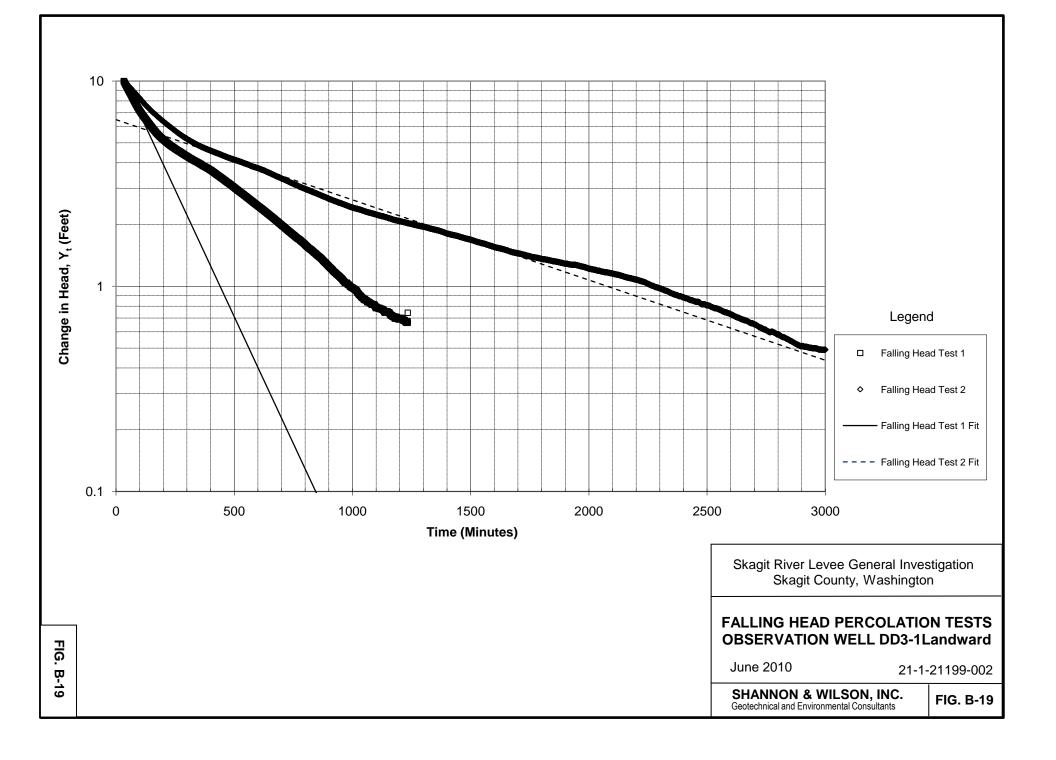


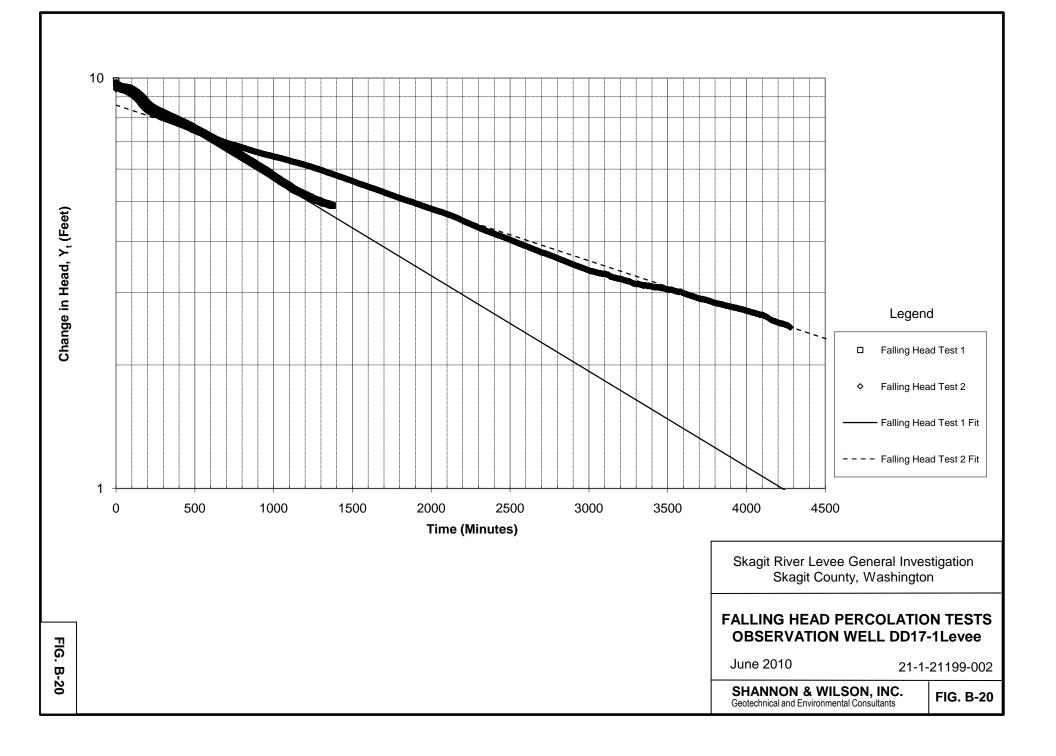


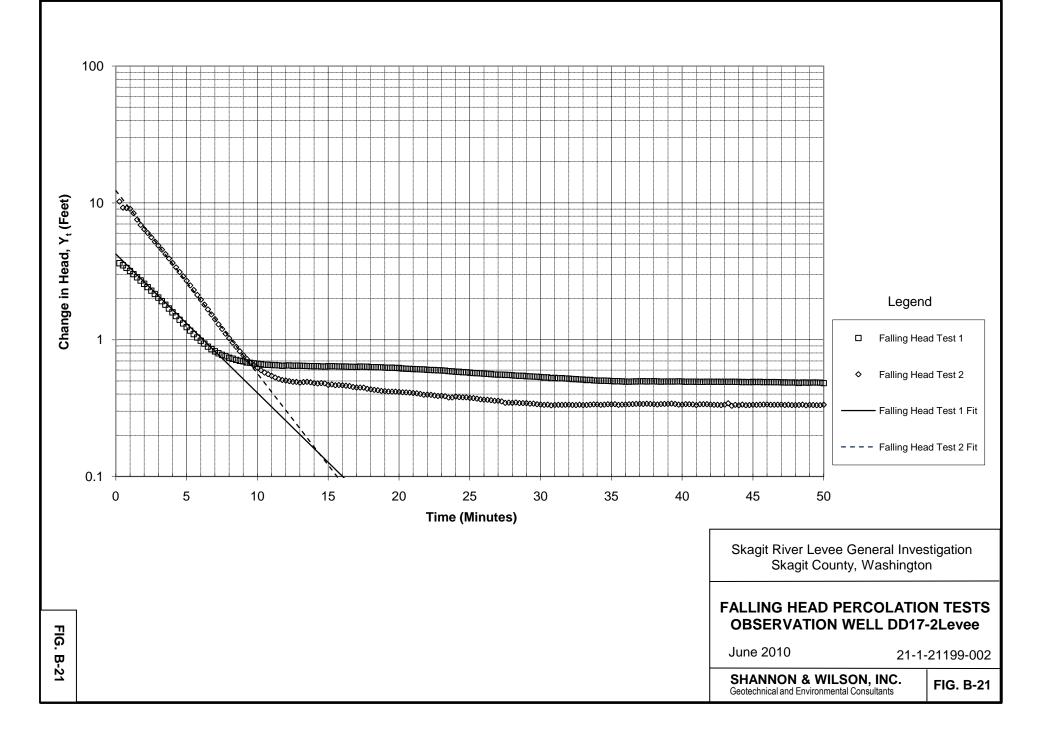


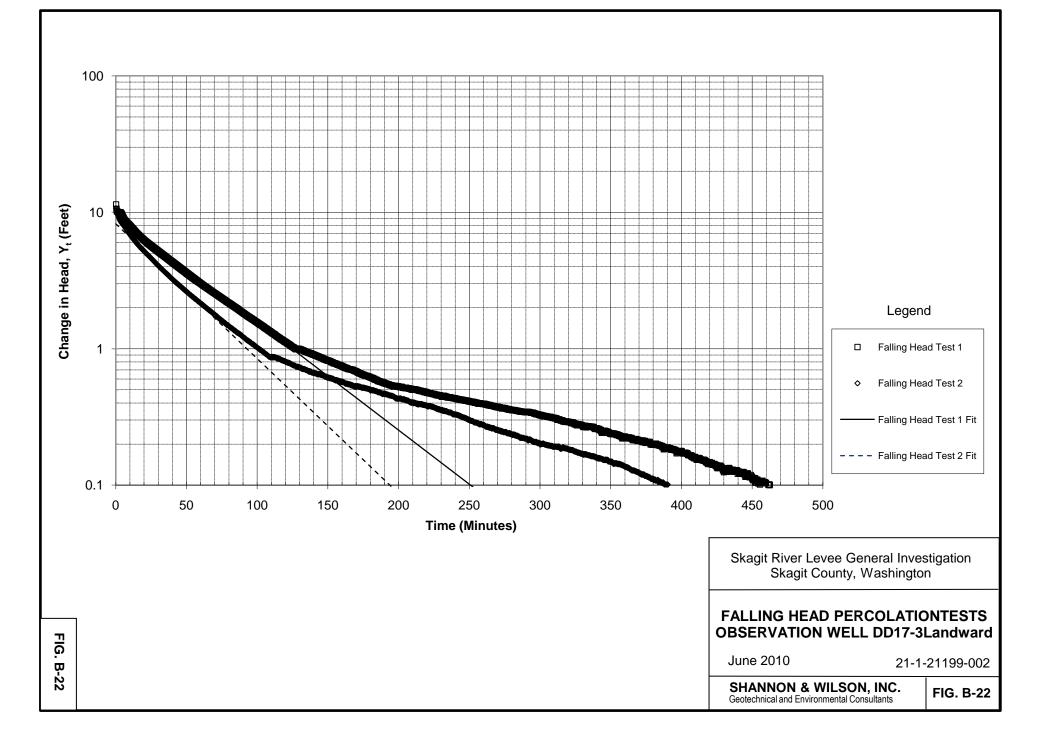


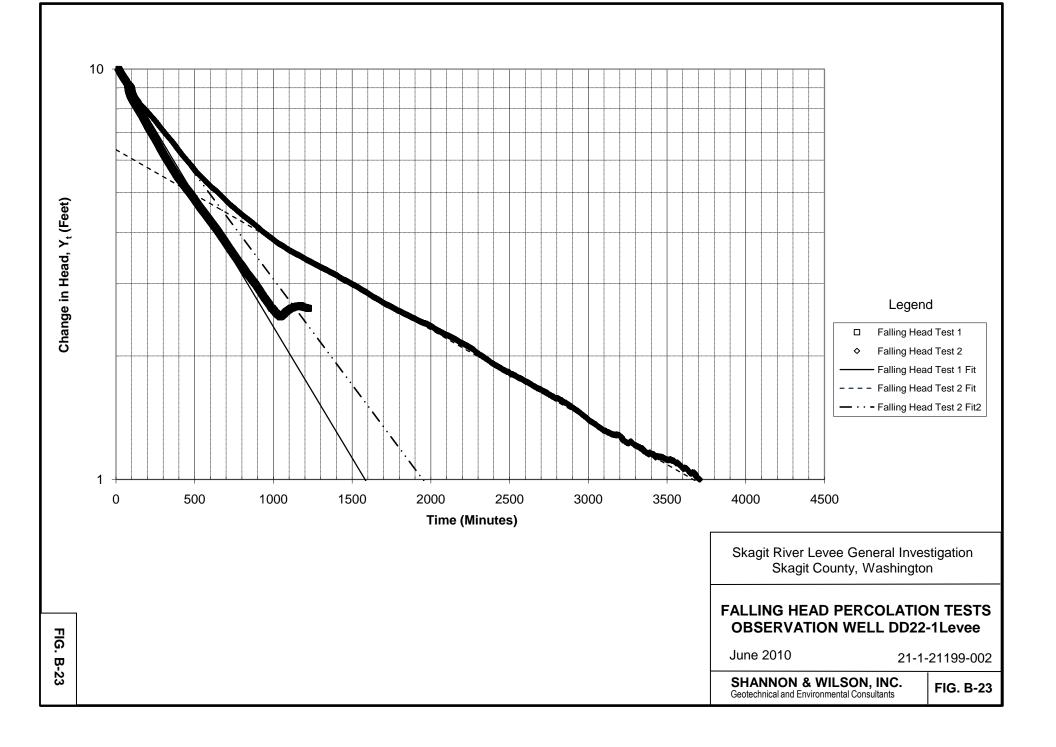


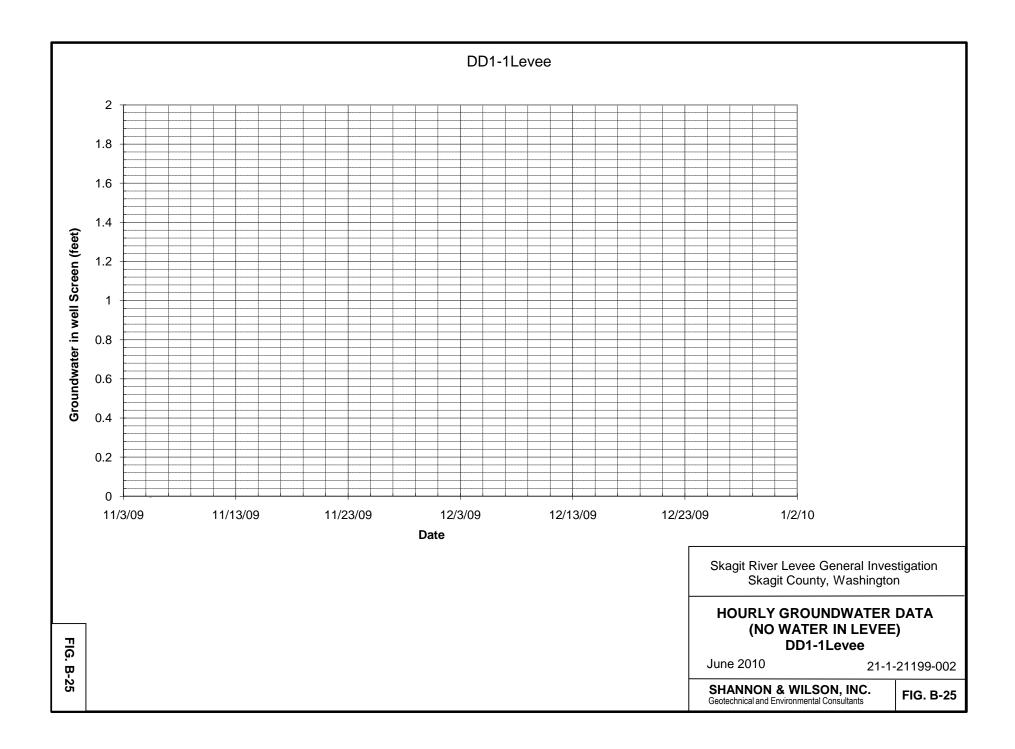


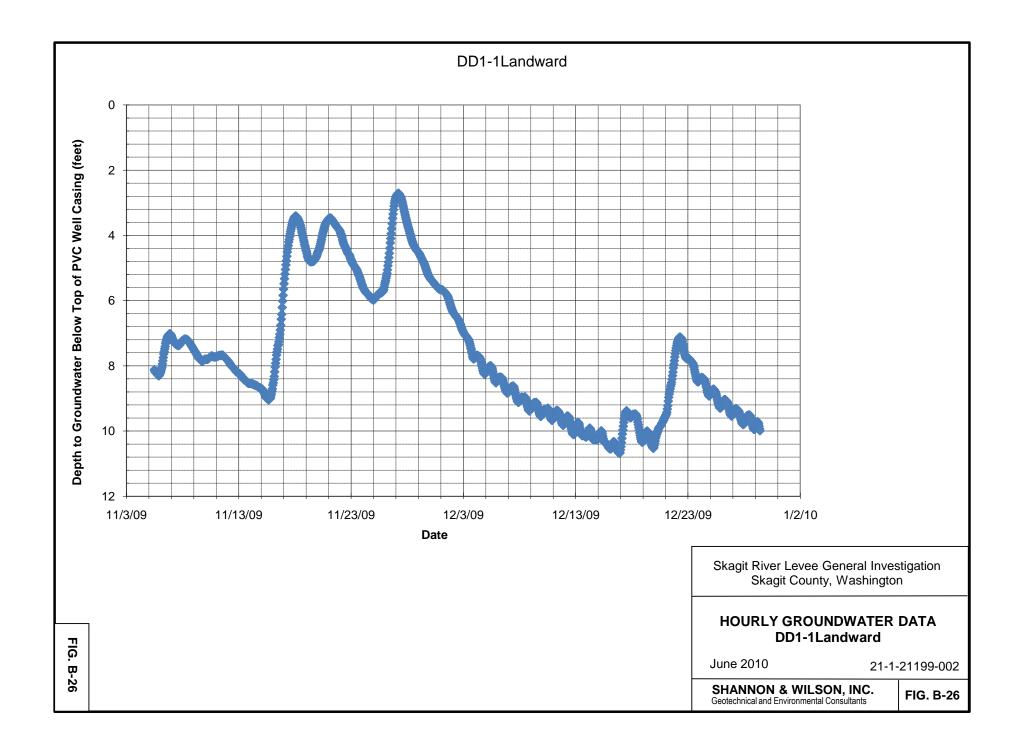


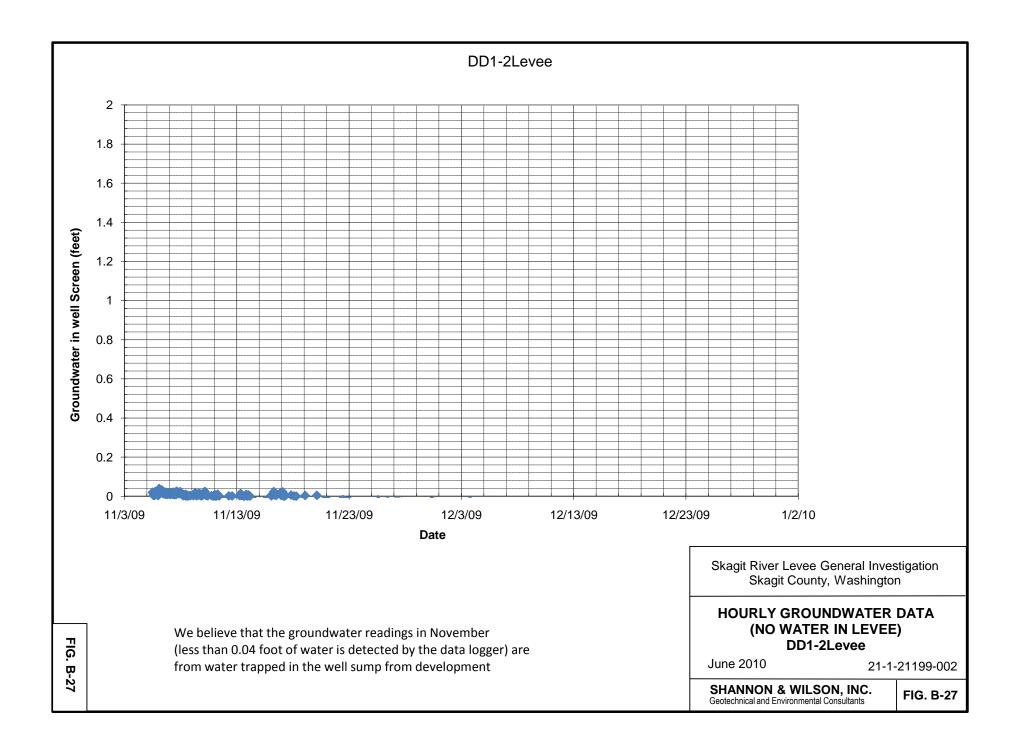


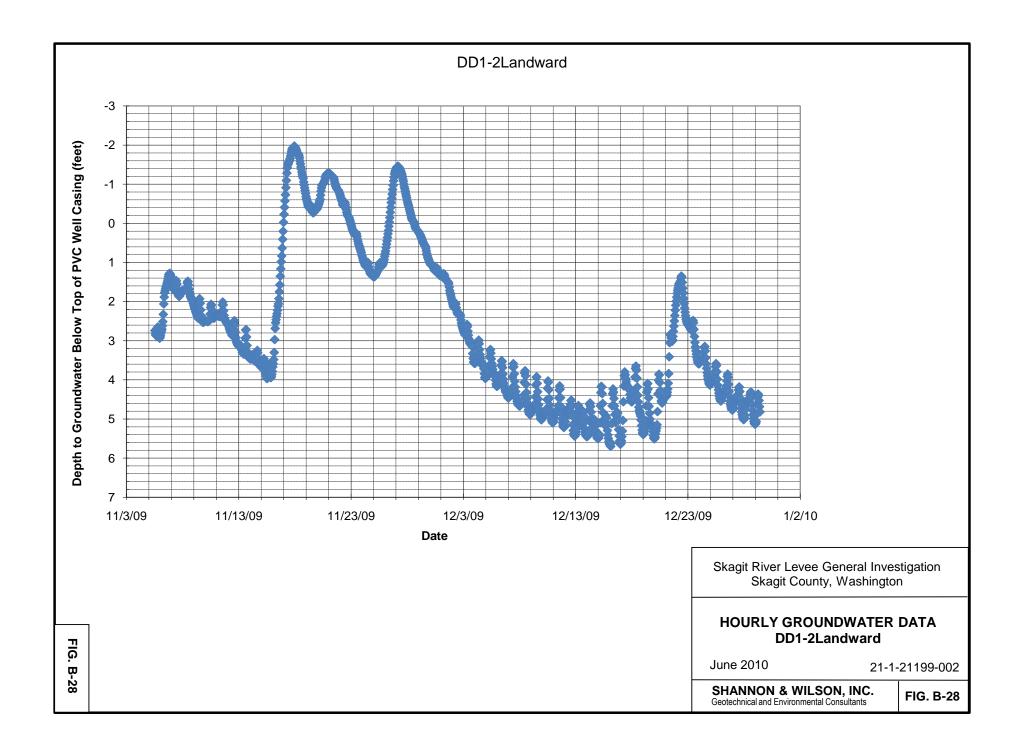


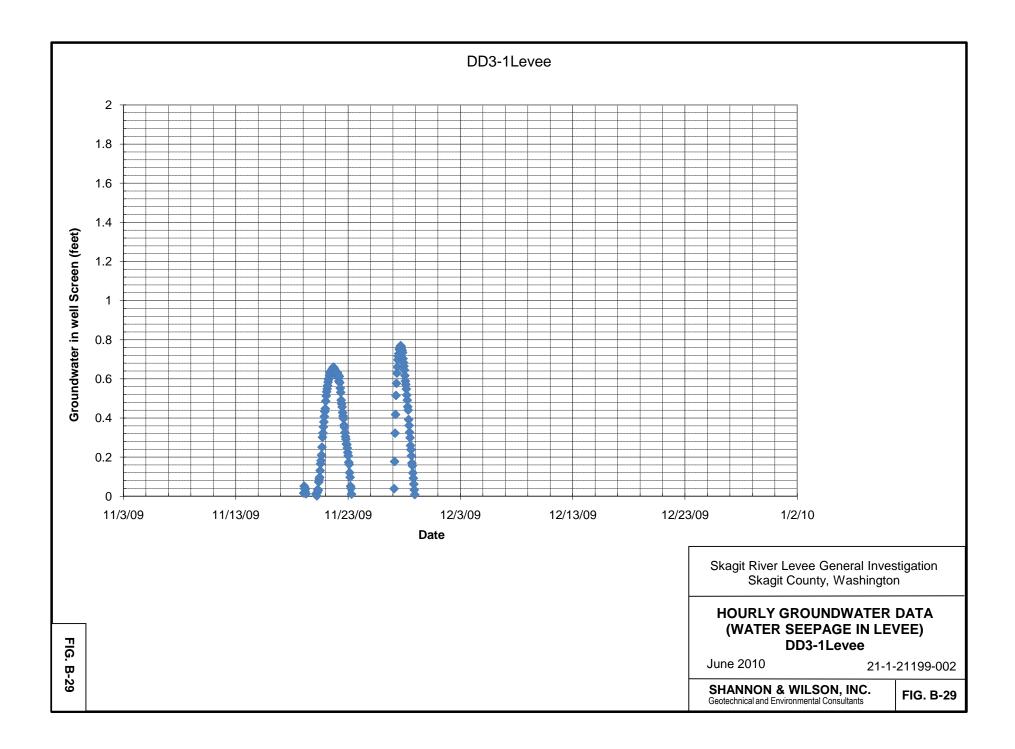

100 Change in Head, Y_t (Feet) 10 Legend Falling Head Test 1 Falling Head Test 2 \diamond Falling Head Test 1 Fit --- Falling Head Test 2 Fit 1 0 500 1000 1500 2000 2500 3000 3500 4000 4500 Time (Minutes) Skagit River Levee General Investigation Skagit County, Washington FALLING HEAD PERCOLATION TESTS **OBSERVATION WELL DD1-2Levee** FIG. B-18 June 2010 21-1-21199-002 SHANNON & WILSON, INC. FIG. B-18 Geotechnical and Environmental Consultants

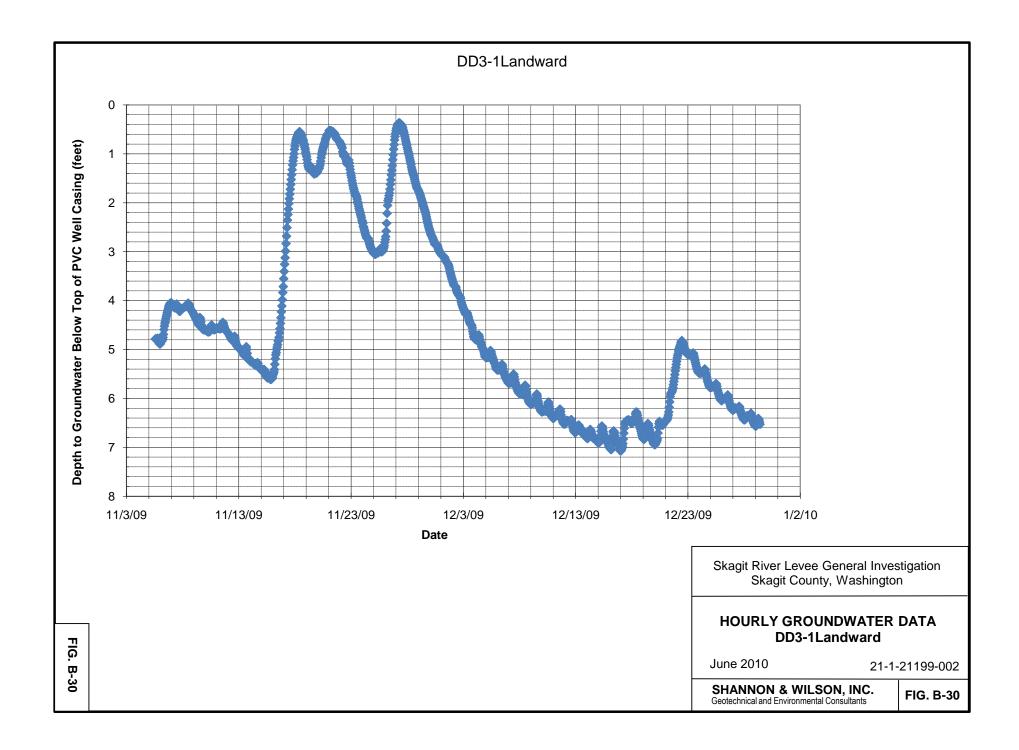


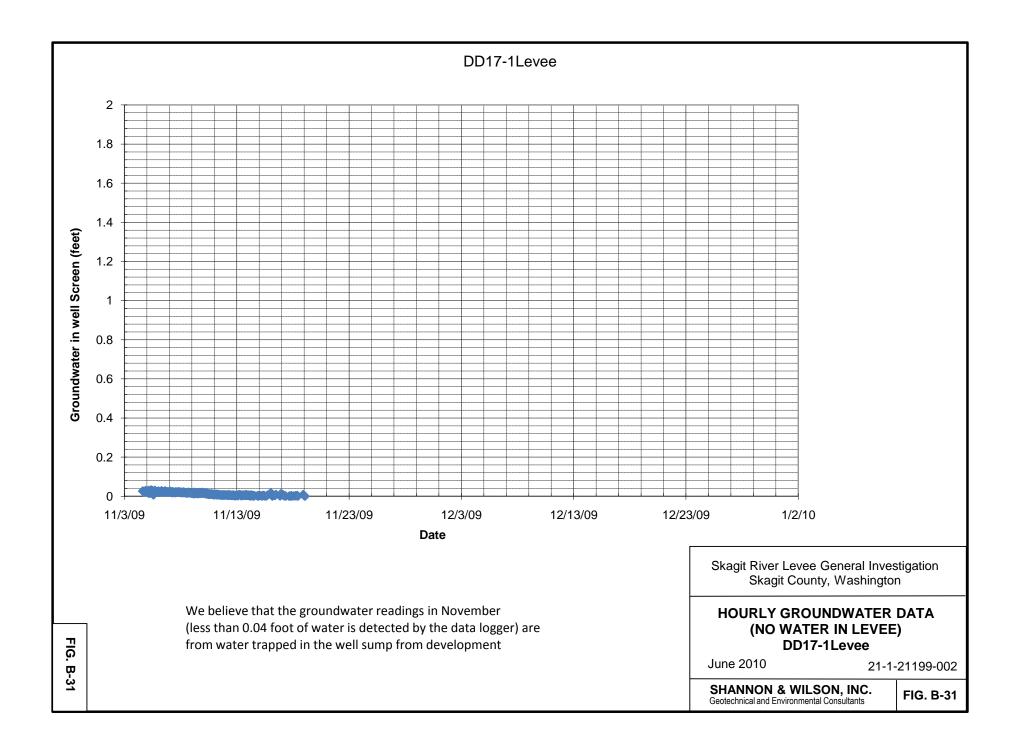


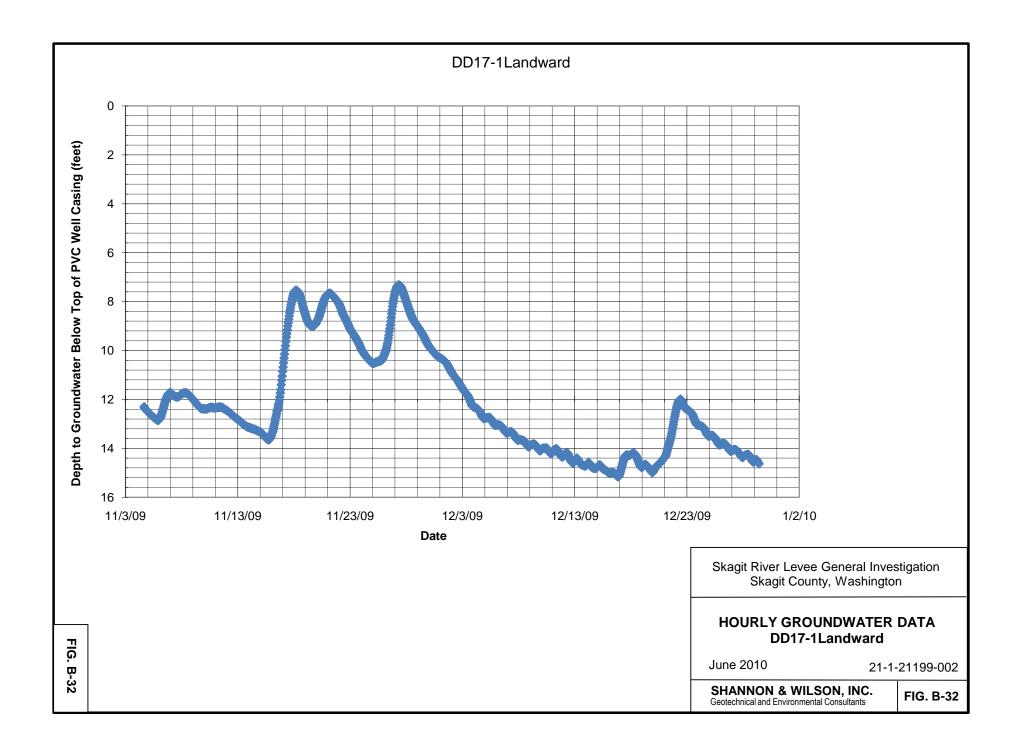


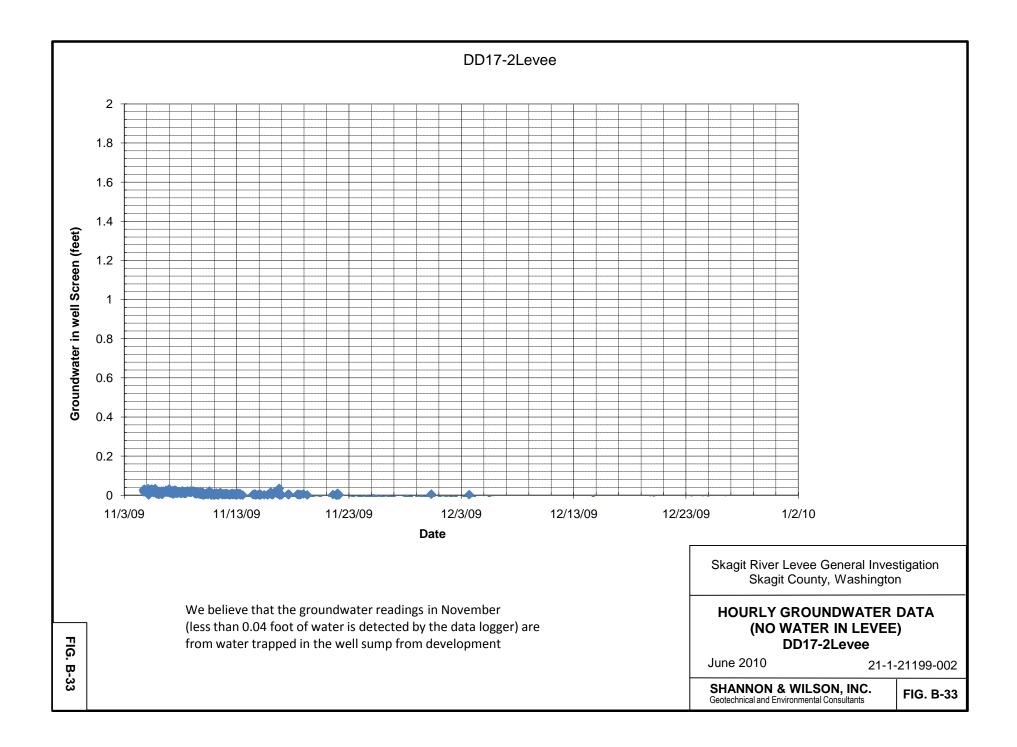


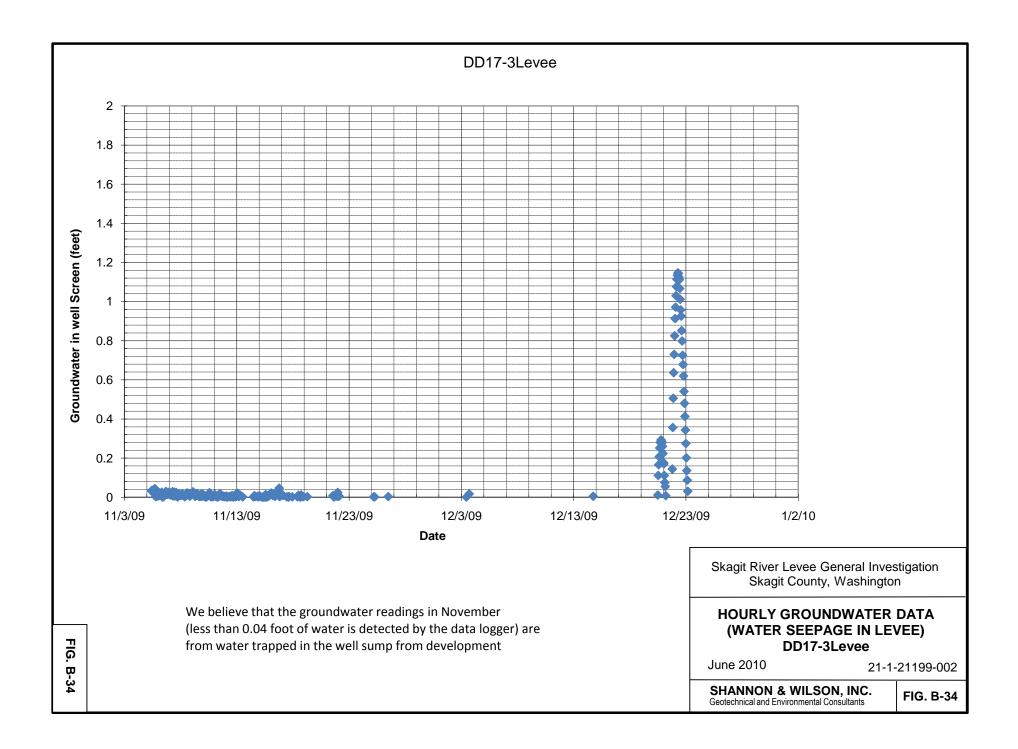

100 Change in Head, Y_t (Feet) 10 Legend Falling Head Test 1 Falling Head Test 2 ٥ Falling Head Test 1 Fit --- Falling Head Test 2 Fit 1 0 500 1000 1500 2000 2500 3000 3500 4000 Time (Minutes) Skagit River Levee General Investigation Skagit County, Washington **FALLING HEAD PERCOLATION TESTS OBSERVATION WELL DD22-2Levee** FIG. B-24 June 2010 21-1-21199-002 SHANNON & WILSON, INC. Geotechnical and Environmental Consultants FIG. B-24

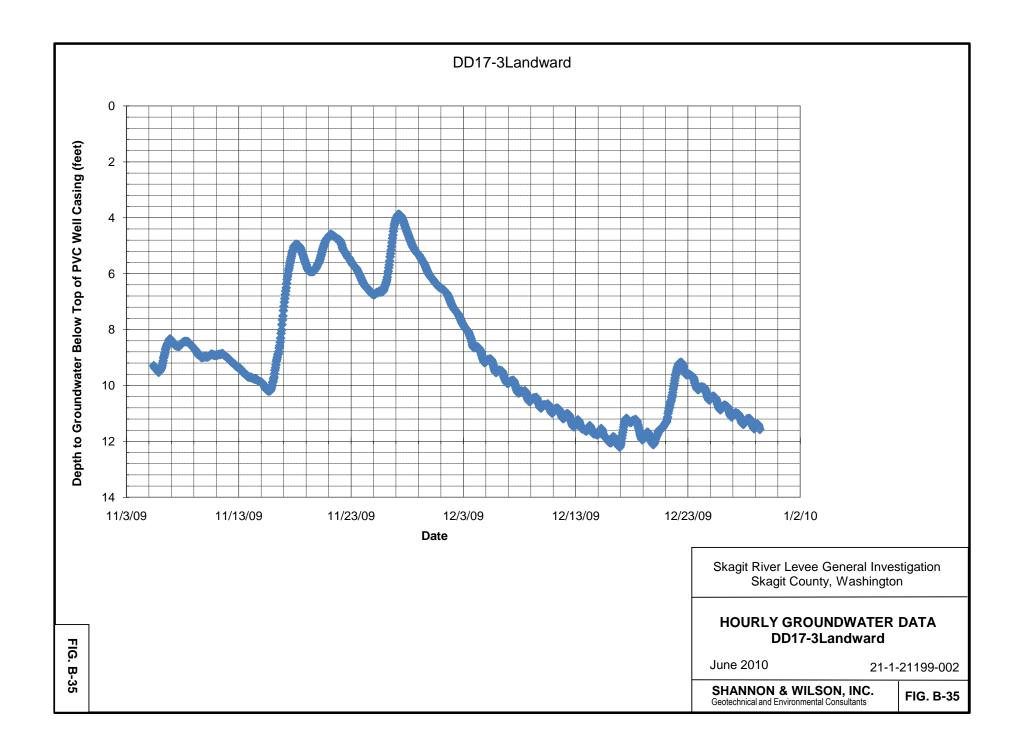


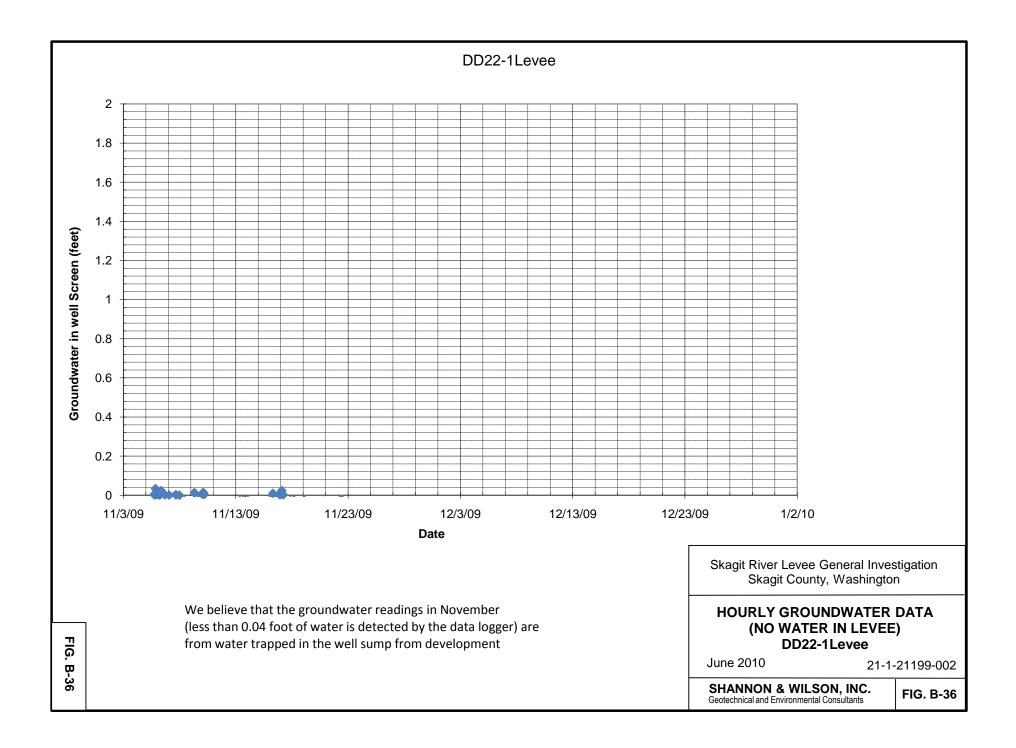


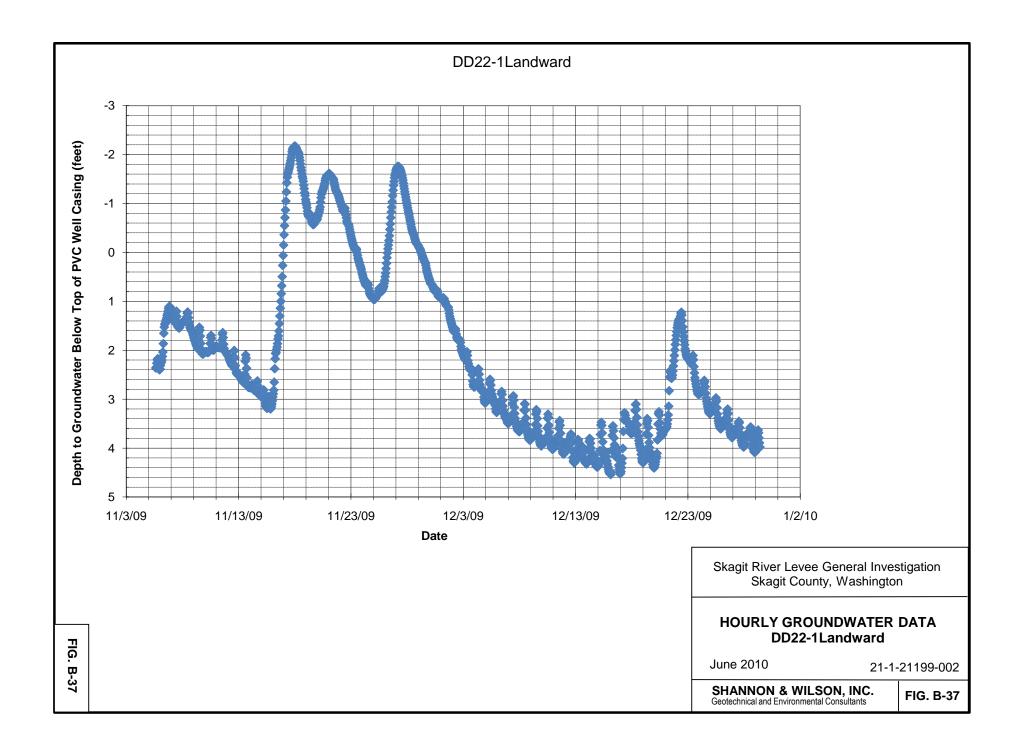


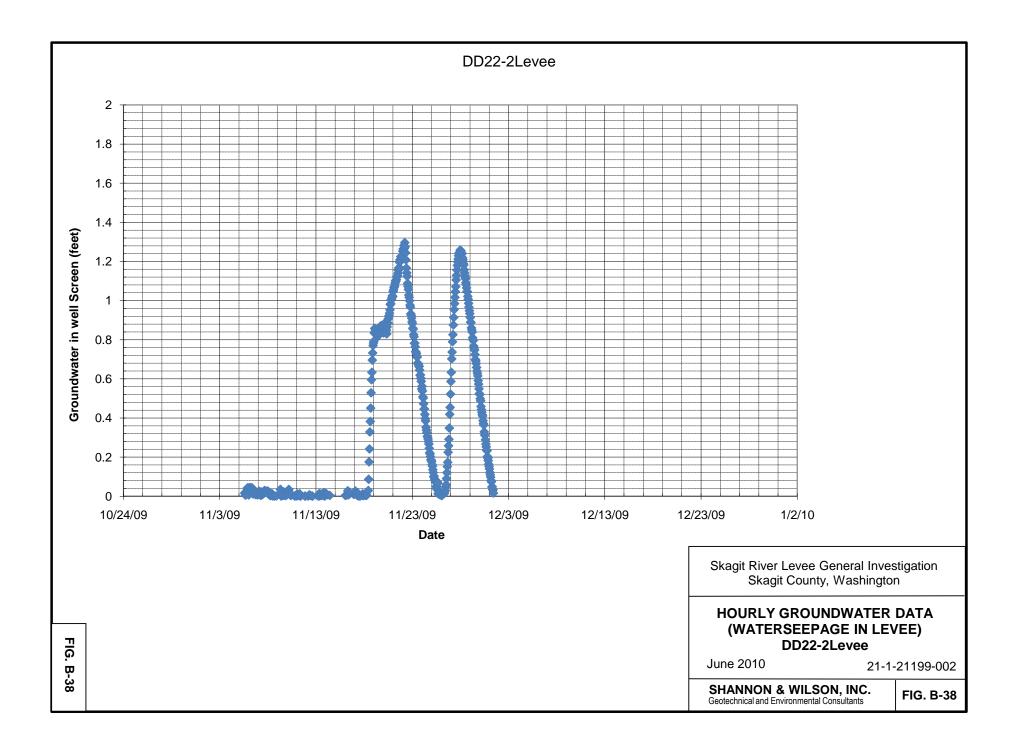


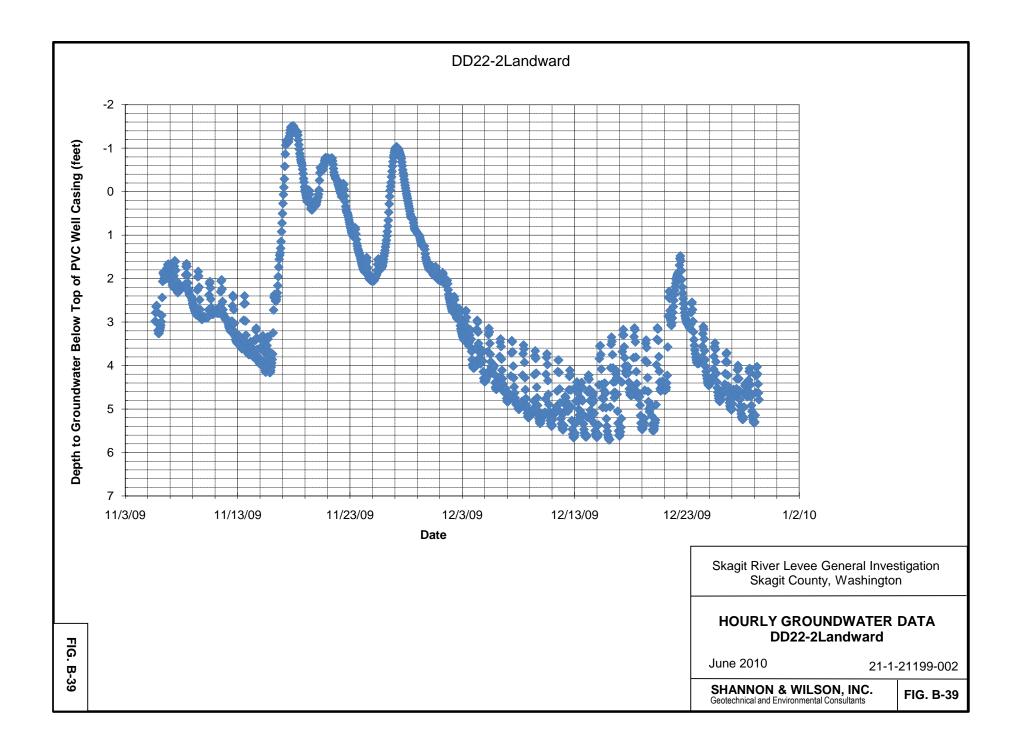












.

APPENDIX C

GEOTECHNICAL LABORATORY TEST RESULTS

APPENDIX C

GEOTECHNICAL LABORATORY TEST RESULTS

TABLE OF CONTENTS

TABLE

C-1	Summary	of Laboratory	Permeability Tests

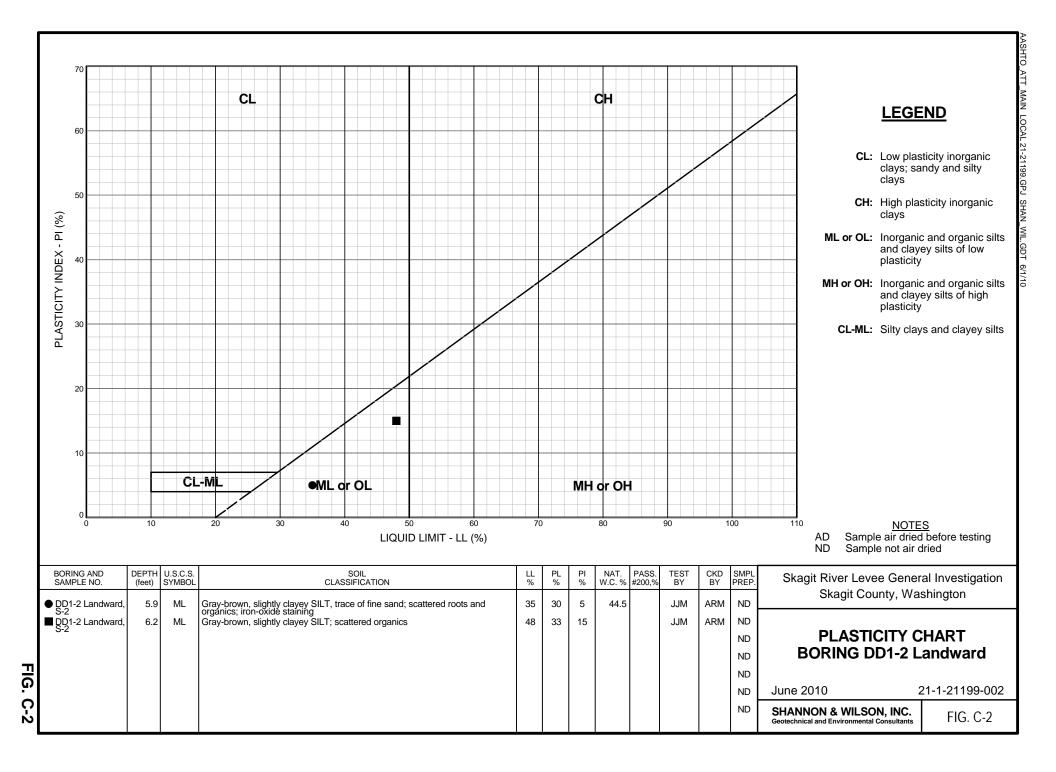
FIGURES

C-1 Plasticity Chart, Boring DD1-1 Levee

C-2 Plasticity Chart, Boring DD1-2 Landward

- C-3 Plasticity Chart, Boring DD1-2 Levee
- C-4 Plasticity Chart, Boring DD3-1 Levee
- C-5 Plasticity Chart, Boring DD17-1 Levee
- C-6 Plasticity Chart, Boring DD17-2 Landward
- C-7 Plasticity Chart, Boring DD17-2 Levee
- C-8 Plasticity Chart, Boring DD17-3 Landward
- C-9 Plasticity Chart, Boring DD17-3 Levee
- C-10 Plasticity Chart, Boring DD22-2 Landward
- C-11 Plasticity Chart, Boring DD22-2 Levee
- C-12 Plasticity Chart, Overbank Deposits (Ha[ob])
- C-13 Grain Size Distribution, Boring DD1-1 Landward (2 sheets)
- C-14 Grain Size Distribution, Boring DD1-1 Levee (2 sheets)
- C-15 Grain Size Distribution, Boring DD1-2 Landward (2 sheets)
- C-16 Grain Size Distribution, Boring DD1-2 Levee (2 sheets)
- C-17 Grain Size Distribution, Boring DD3-1 Landward (2 sheets)
- C-18 Grain Size Distribution, Boring DD3-1 Levee (2 sheets)
- C-19 Grain Size Distribution, Boring DD17-1 Landward (2 sheets)
- C-20 Grain Size Distribution, Boring DD17-1 Levee (2 sheets)
- C-21 Grain Size Distribution, Boring DD17-2 Landward
- C-22 Grain Size Distribution, Boring DD17-2 Levee
- C-23 Grain Size Distribution, Boring DD17-3 Landward
- C-24 Grain Size Distribution, Boring DD17-3 Levee (2 sheets)
- C-25 Grain Size Distribution, Boring DD22-1 Landward (2 sheets)
- C-26 Grain Size Distribution, Boring DD22-1 Levee (2 sheets)
- C-27 Grain Size Distribution, Boring DD22-2 Landward
- C-28 Grain Size Distribution, Boring DD22-2 Levee (2 sheets)
- C-29 Grain Size Distribution, Channel Deposits (Ha[cd])


TABLE OF CONTENTS (cont.)


FIGURES (cont.)

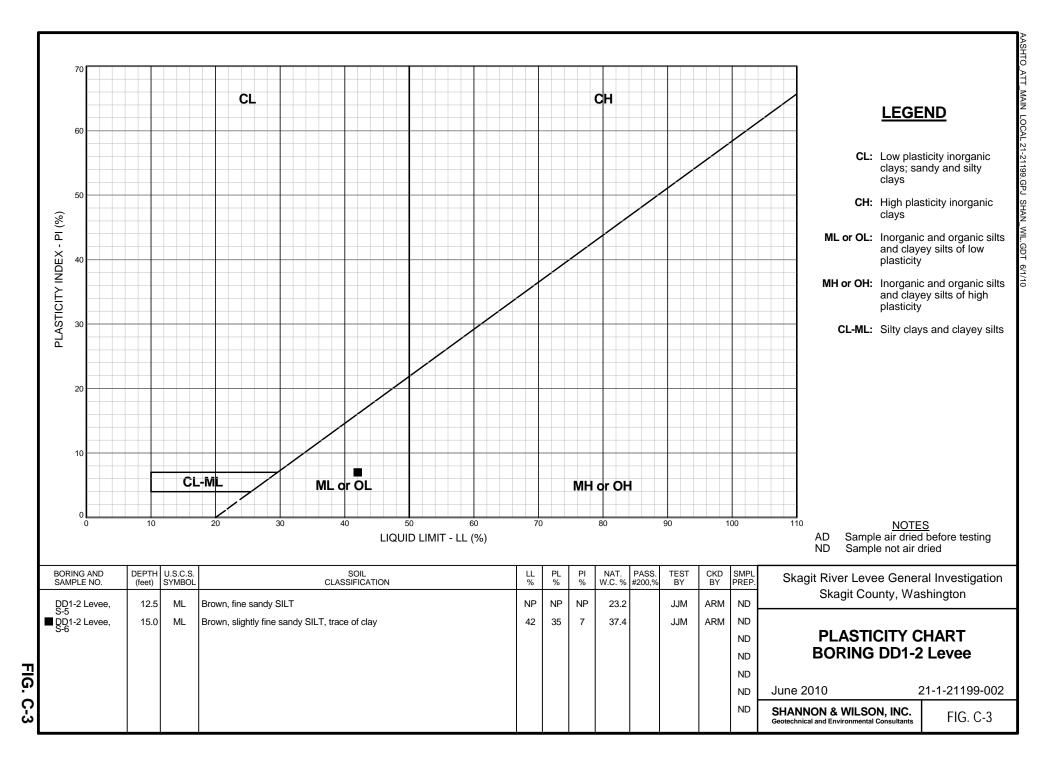
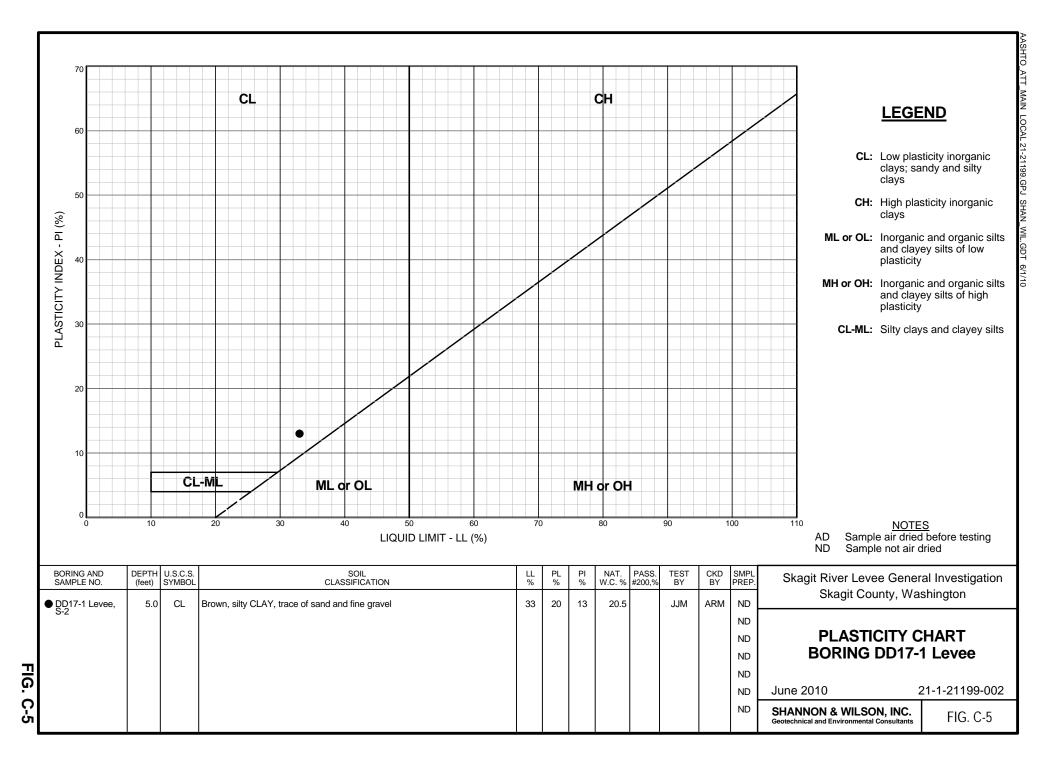
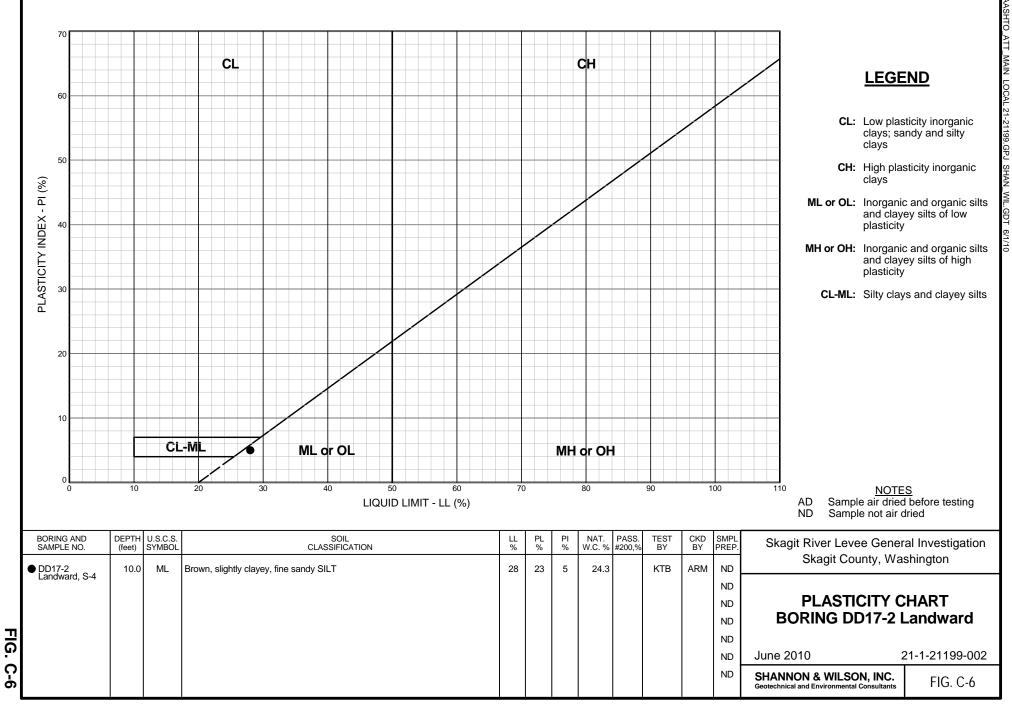
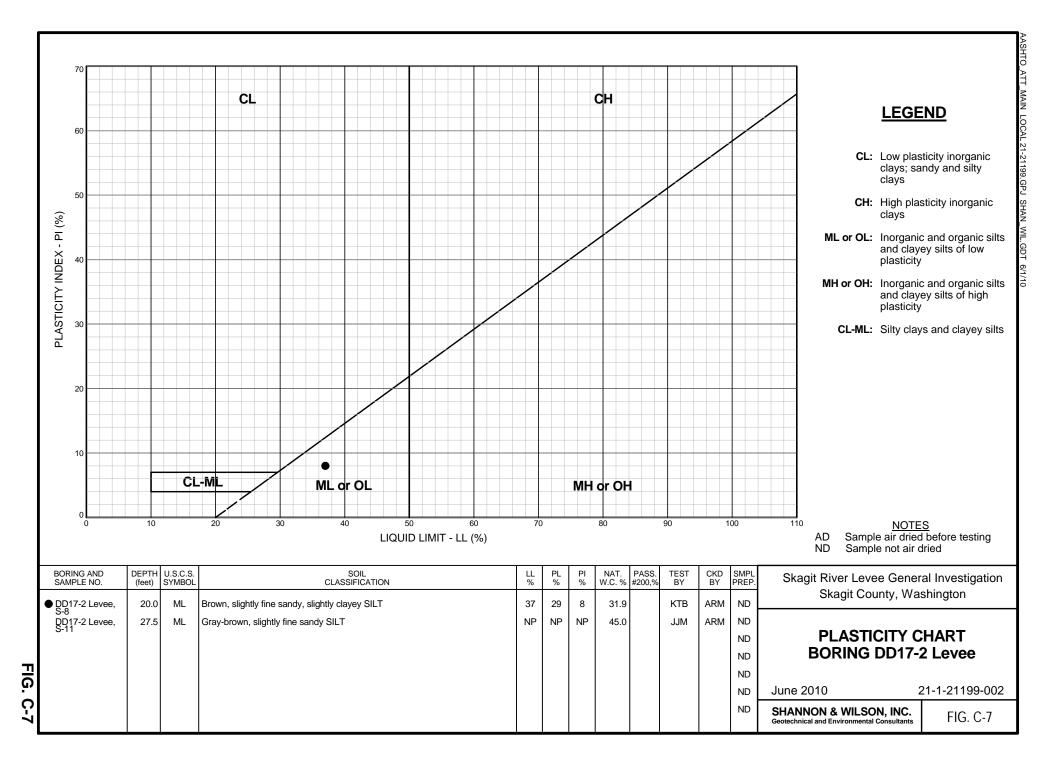
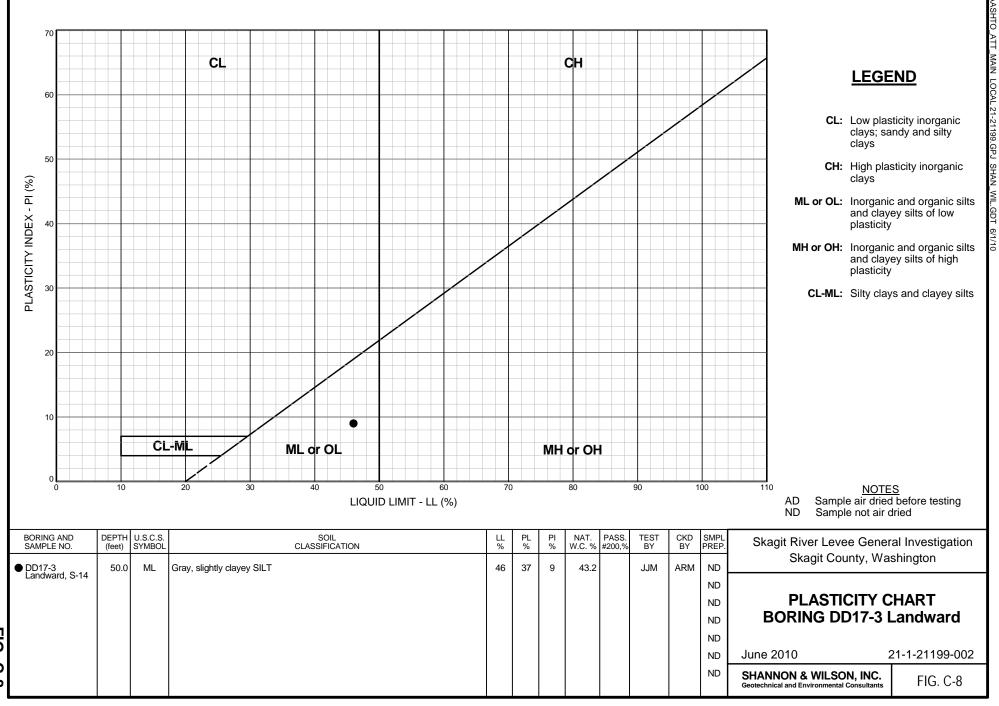
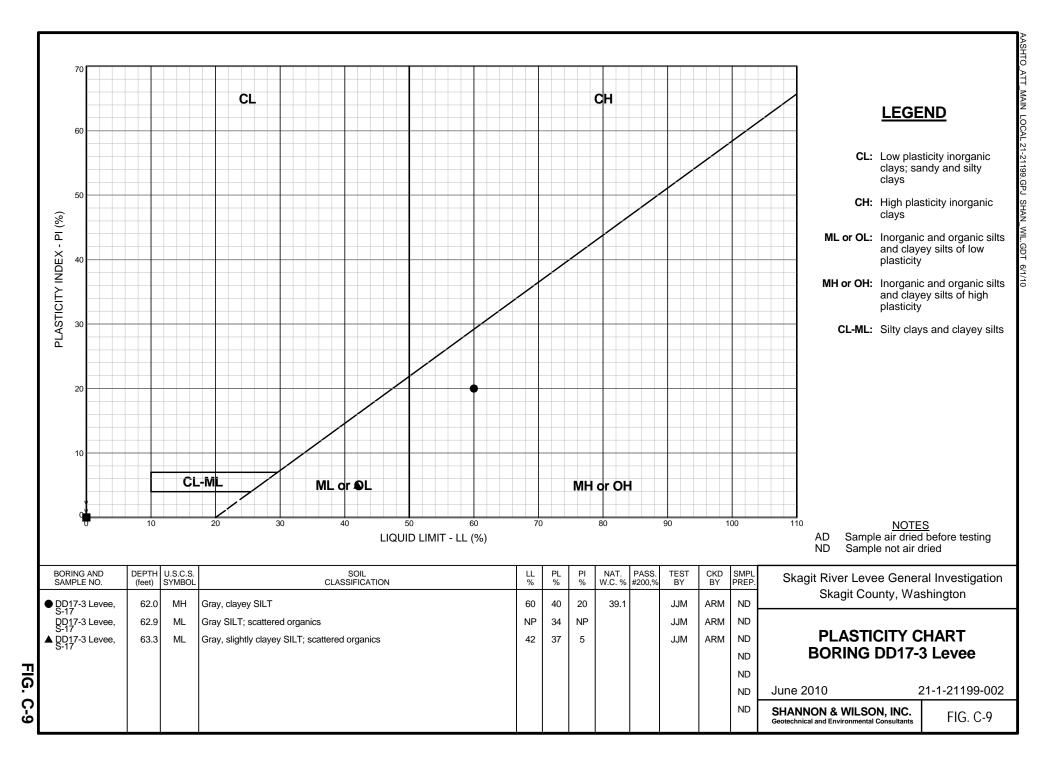
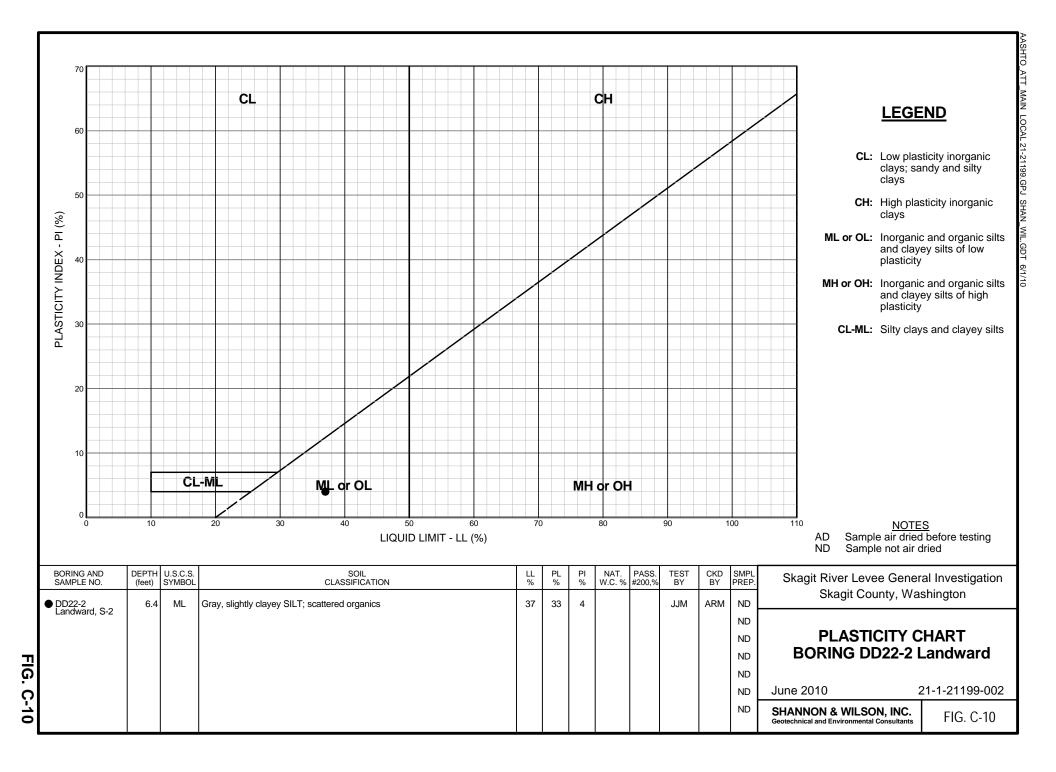
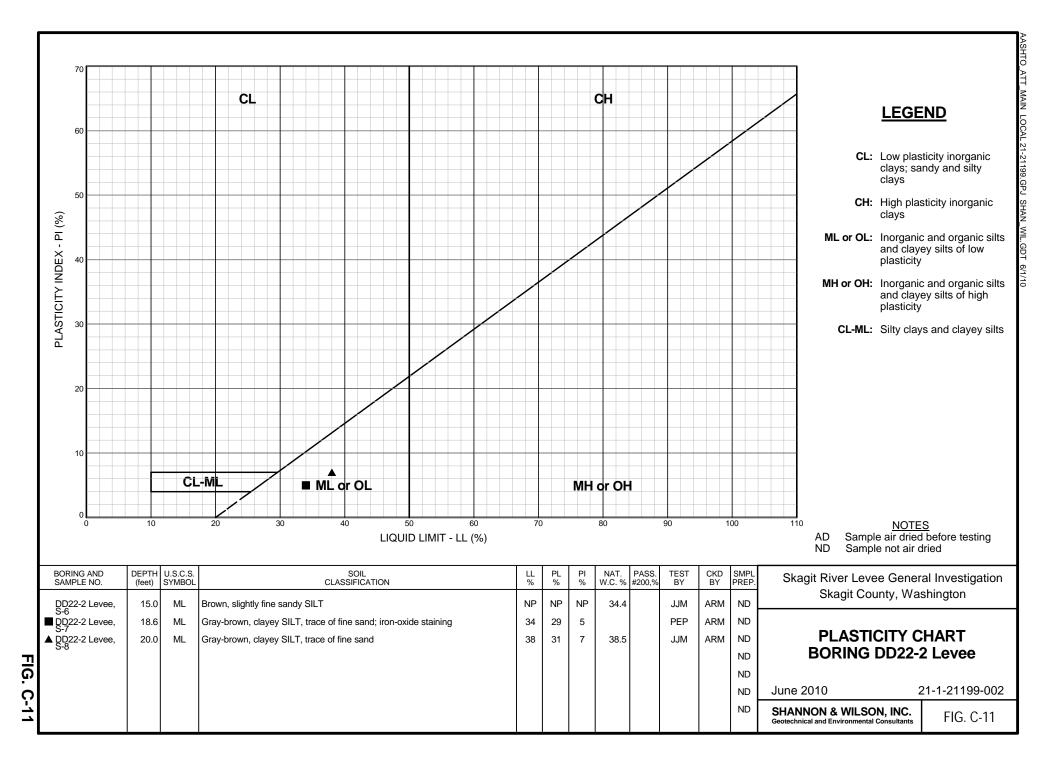
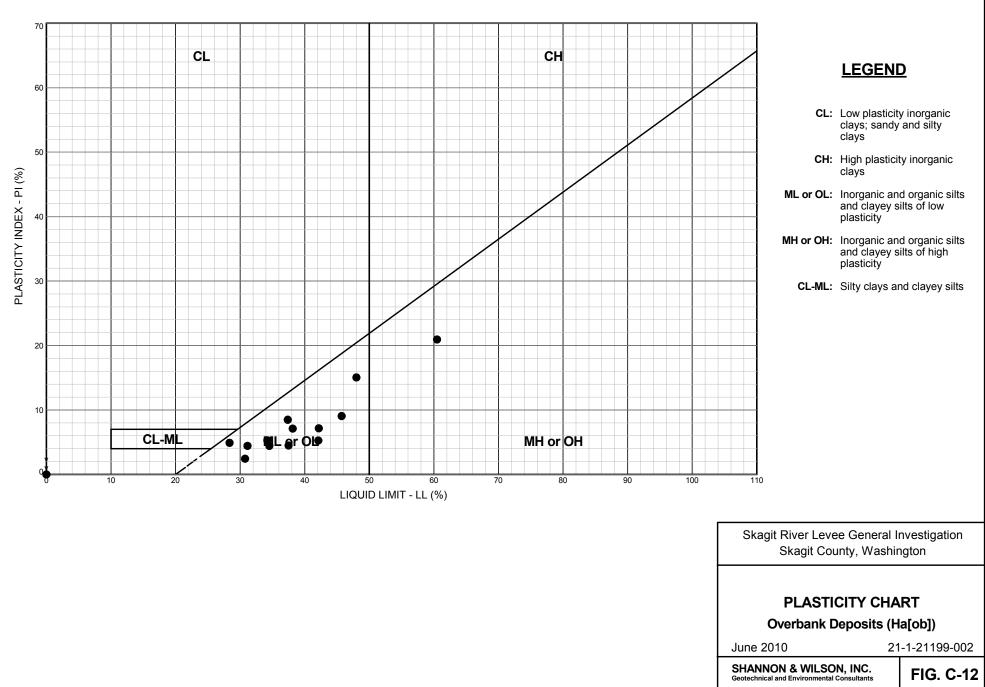

- C-30 Grain Size Distribution, Overbank Deposits (Ha[ob])
- C-31 Grain Size Distribution, Gravelly Channel Deposits (Ha[g])
- C-32 Grain Size Distribution, Levee Fill (Hf)
- C-33 Grain Size Distribution, Estuary Deposits (He)
- C-34 Consolidation Test, DD17-3 Levee, S-17, 62.9' (3 sheets)
- C-35 Consolidation Test, DD22-2 Landward, S-2, 6.4' (3 sheets)
- C-36 CU Triaxial Test, Boring DD17-3 Levee, Depth= 63.3' (8 sheets)
- C-37 CU Triaxial Test, Boring DD1-2 Landward, Depth= 6.2' (8 sheets)
- C-38 CU Triaxial Test, Boring DD22-2 Levee, Depth= 18.6' (8 sheets)
- C-39 Hydraulic Conductivity Test, Boring DD1-1 Landward, Depth 5.0/7.5 Feet (2 sheets)
- C-40 Hydraulic Conductivity Test, Boring DD1-1 Levee, Depth 27.4 Feet (2 sheets)
- C-41 Hydraulic Conductivity Test, Boring DD3-1 Landward, Depth 40.0 Feet (2 sheets)
- C-42 Hydraulic Conductivity Test, Boring DD3-1 Levee, Depth 18.1 Feet (2 sheets)
- C-43 Hydraulic Conductivity Test, Boring DD3-1 Levee, Depth 56.1 Feet (2 sheets)
- C-44 Hydraulic Conductivity Test, Boring DD17-1 Landward, Depth 5.0/7.5 Feet (2 sheets)
- C-45 Hydraulic Conductivity Test, Boring DD17-1 Levee, Depth 12.5/15.0 Feet (2 sheets)
- C-46 Hydraulic Conductivity Test, Boring DD17-2 Landward, Depth 7.5 Feet (2 sheets)
- C-47 Hydraulic Conductivity Test, Boring DD17-2 Levee, Depth 24.5 Feet (2 sheets)
- C-48 Hydraulic Conductivity Test, Boring DD17-3 Landward, Depth 5.9 Feet (2 sheets)
- C-49 Hydraulic Conductivity Test, Boring DD17-3 Levee, Depth 12.5/15.0 Feet (2 sheets)
- C-50 Hydraulic Conductivity Test, Boring DD22-1 Landward, Depth 2.5 Feet (2 sheets)
- C-51 Hydraulic Conductivity Test, Boring DD22-1 Levee, Depth 15.0 Feet (2 sheets)
- C-52 Hydraulic Conductivity Test, Boring DD22-2 Landward, Depth 5.3 Feet (2 sheets)
- C-53 Hydraulic Conductivity Test, Boring DD22-2 Landward, Depth 41.2 Feet (2 sheets)
- C-54 Hydraulic Conductivity Test, Boring DD22-2 Levee, Depth 18.3 Feet (2 sheets)

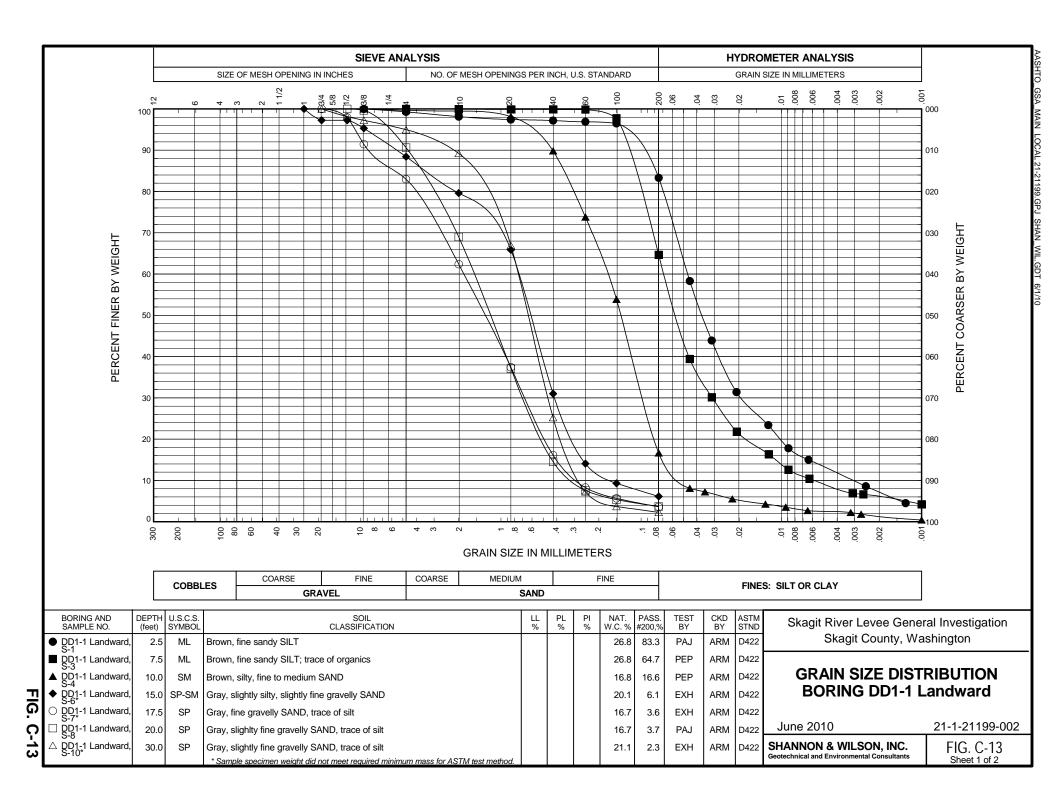
Table C-1 Summary of Laboratory Permeability Tests

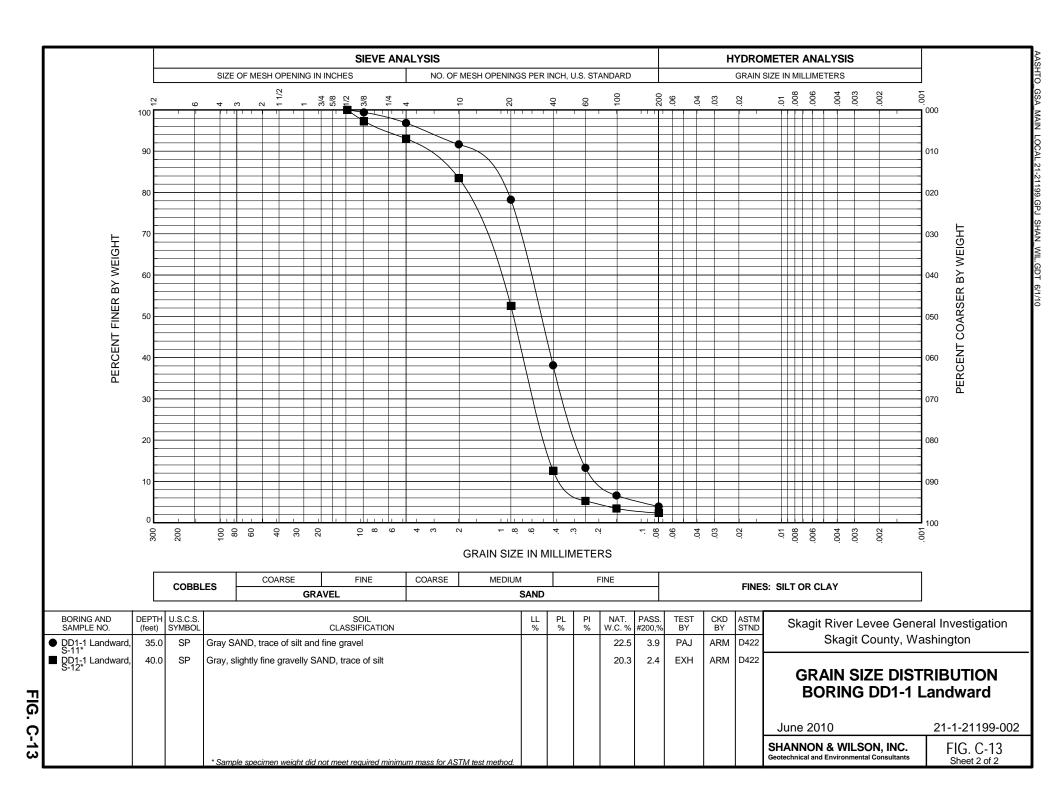

Geologic		Avg. Hydraulic	Reconstituted	Sample		Figure
Designation	Geologic Description	Conductivity (cm/sec)	Sample (Y/N)	Depth (ft)	Boring Designation	No
Overbank Deposits	Very loose, fine sandy SILT to silty fine SAND, trace fine roots,					
(Ha[ob])	laminated (ML/SM)	7.9x10 ⁻⁰⁶	Yes	5.0 / 7.5	DD1-1 Landward	C-39
Overbank Deposits	Loose, interbedded, slightly fine sandy to fine sandy SILT, silty fine					
(Ha[ob])	SAND, & medium stiff organic SILT, with 1/2-inch silty clay seam				DD1-1 Levee	
	and 7-inch wood fragment (ML/SM/OL)	2.0×10^{-05}	No	27.4		C-40
EstuaryDeposits	Loose, silty, fine to medium SAND, trace of clay, trace of shell					
(He)	fragments (SM)	4.8x10 ⁻⁰⁷	Yes	40.0	DD3-1 Landward	C-41
Overbank Deposits	Fine sandy SILT grading to silty fine SAND, trace of fine roots					
(Ha[ob])	(ML/SM)	2.6x10 ⁻⁰⁴	No	18.1	DD3-1 Levee	C-42
Estuary Deposits	Trace to slightly silty, fine to medium SAND, trace of shell					
(He)	fragments, scattered coarse wood fragments (SP-SM/SP)	1.6×10 ⁻⁰³	No	56.1	DD3-1 Levee	C-43
Channel Deposits	Very loose to loose, silty fine SAND (SM)	····				
(Ha[cd])		4.1×10 ⁻⁰⁵	Yes	5.0 / 7.5	DD17-1 Landward	C-44
Overbank Deposits						
(Ha[ob])	Loose to medium dense, silty fine SAND, trace fine gravel (SM)	5.3x10 ⁻⁰⁴	Yes	12.5 / 15.0	DD17-1 Levee	C-45
Overbank Deposits	Loose, fine sandy SILT, trace of clay (ML)					
(Ha[ob])		3.4x10 ⁻⁰⁷	No	7.5	DD17-2 Landward	C-46
Overbank Deposits	Very soft, trace to slightly fine sandy SILT, trace of clay, scattered					
(Ha[ob])	silty fine sand seams and layers (ML)	1.5x10 ⁻⁰⁵	No	24.5	DD17-2 Levee	C-47
Overbank Deposits	Very loose to loose, interbedded, fine sandy SILT to slightly silty					
(Ha[ob])	and silty, fine SAND (ML/SM/SP-SM)	3.5x10 ⁻⁰⁴	No	5.9	DD17-3- Landward	C-48
Overbank Deposits						_
(Ha[ob])	Loose, silty fine SAND to fine sandy SILT, laminated (SM/ML)	1.9x10 ⁻⁰⁴	Yes	12.5 / 15.0	DD17-3 Levee	C-49
Overbank Deposits	Loose, silty fine SAND, scattered roots (SM)					
(Ha[ob])		4.8x10 ⁻⁰⁴	Yes	2.5	DD22-1 Landward	C-50
Overbank / Fill	Loose, fine sandy SILT to silty fine SAND, clayey silt pockets,					
(Ha[ob] / Hf)	scatered roots (ML/SM) / Loose silty fine SAND, scattered silt			10.0 / 15.0 /	DD22-1 Levee	
	layers (SM)	1 .2x10 ⁻⁰⁴	Yes	17.5		C-51
Overbank Deposits	Very loose, slightly fine sandy to fine sandy SILT, trace of clay to					
(Ha[ob])	soft, slightly clayey SILT (ML)	2.9×10 ⁻⁰⁵	No	5.3	DD22-2 Landward	C-52
Channel Deposits	Loose, silty fine SAND to fine sandy SILT, laminated, scattered		1			
(Ha[cd])	organics, scattered slightly clayey to clayey seams, slightly silty				DD22-2 Landward	
	fine sand (SM/ML)	4.7x10 ⁻⁰⁵	No	41.2		C-53
Overbank Deposits		k				
(Ha[ob])	Medium stiff, clayey SILT, trace of fine sand, scattered organic-rich					
• • • •	partings, scattered slightly fine sandy silt seams (ML)	2.2×10 ⁻⁰⁴	No	18.3	DD-22-2 Levee	C-54

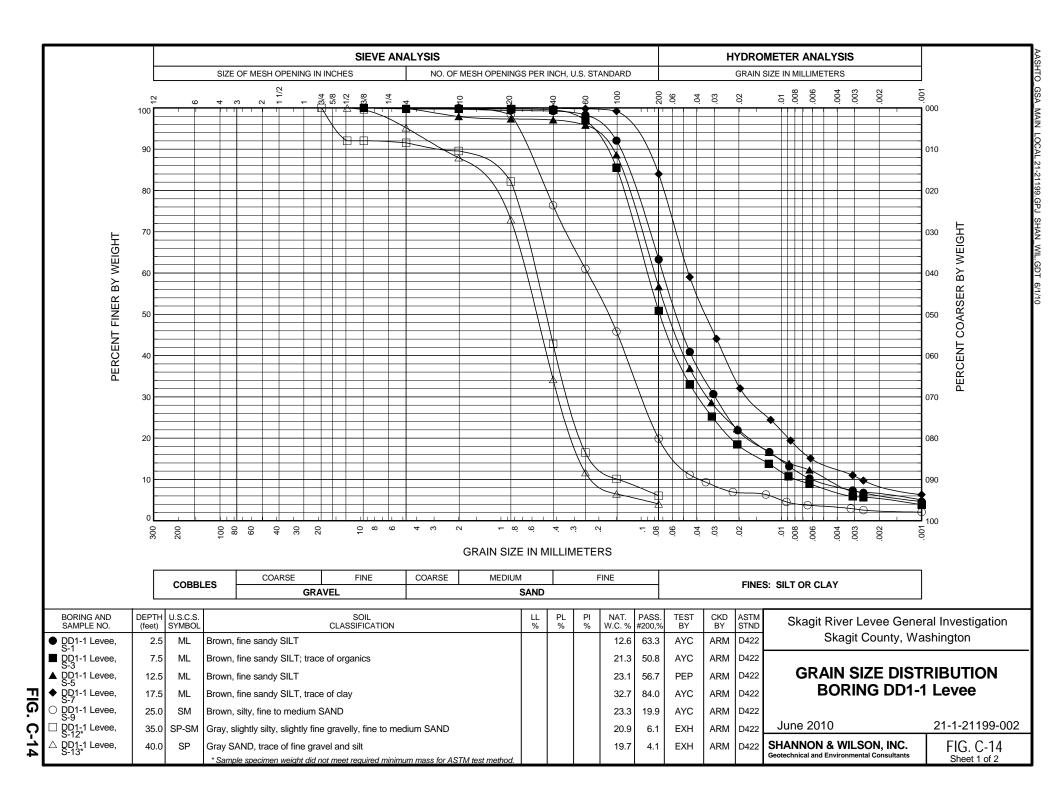


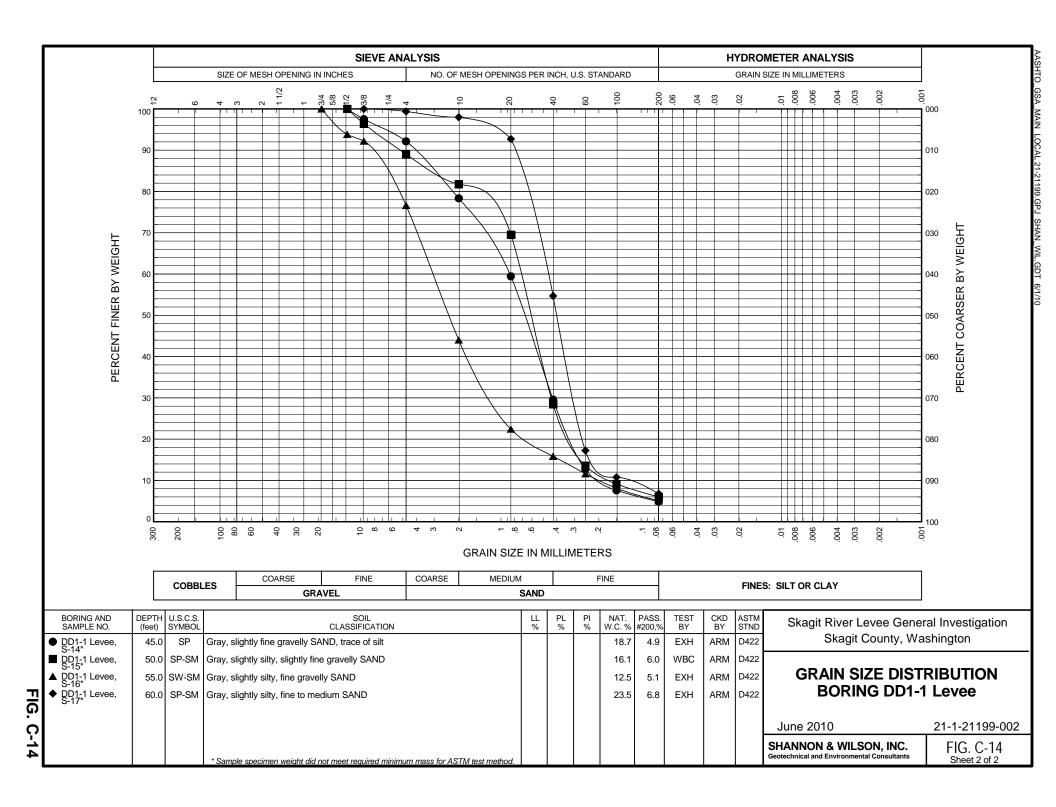


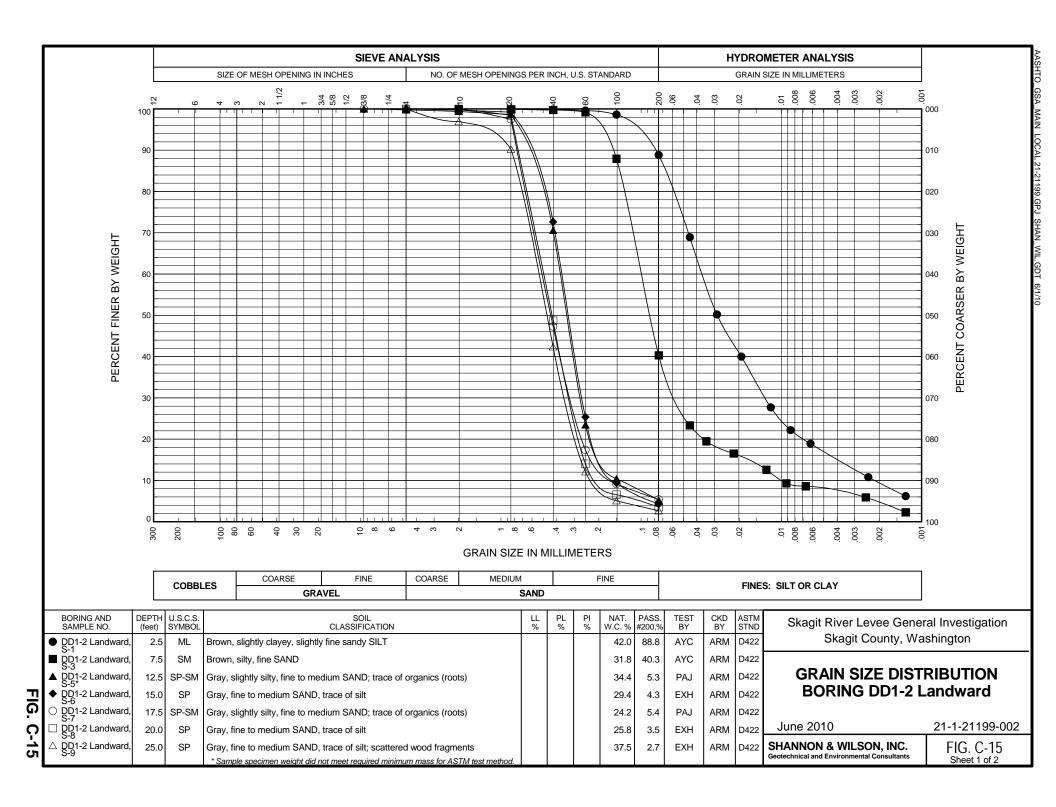






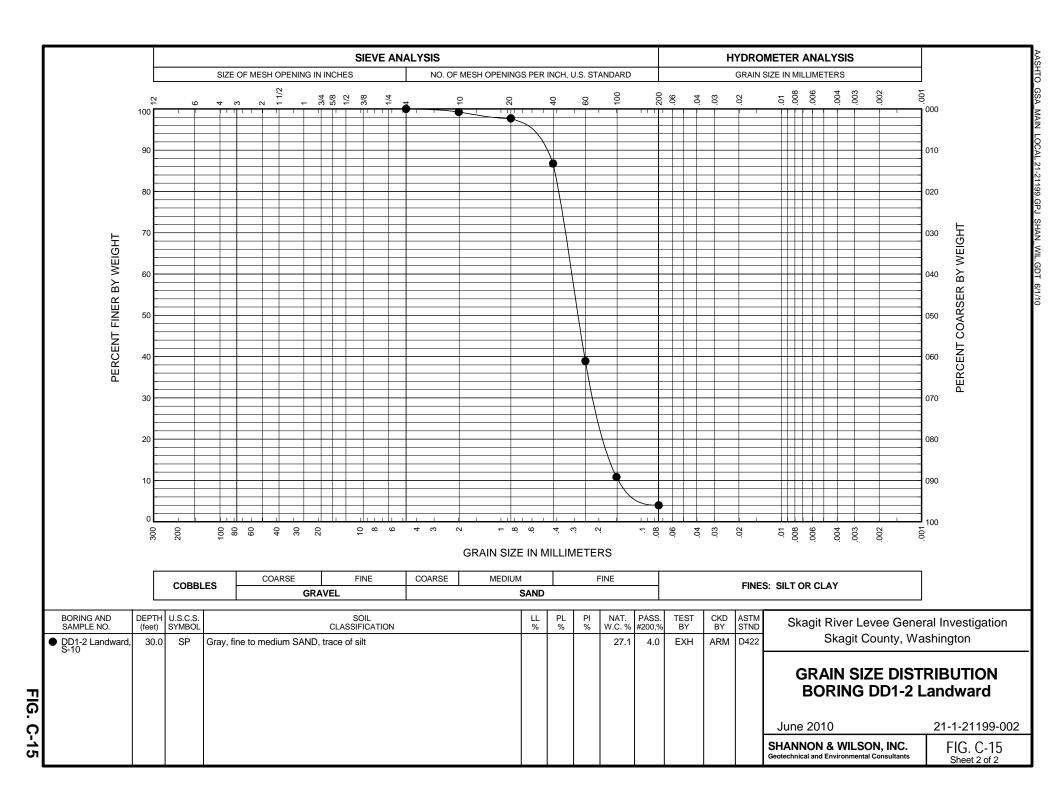

FIG. C-8

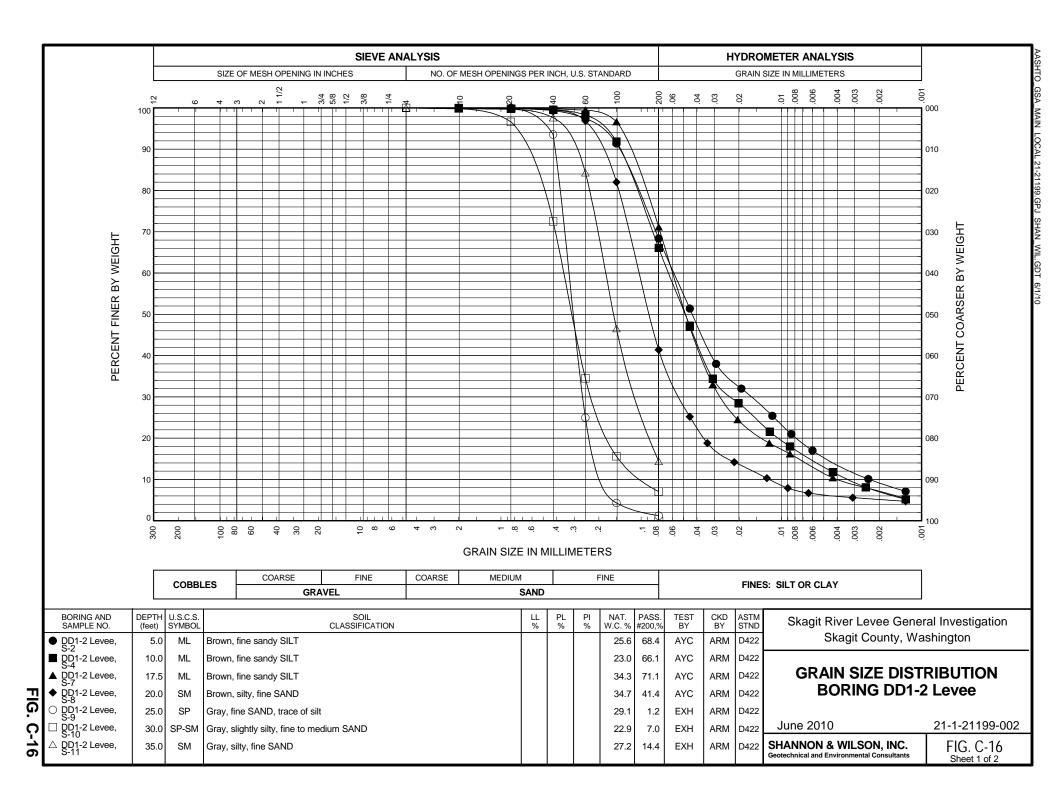


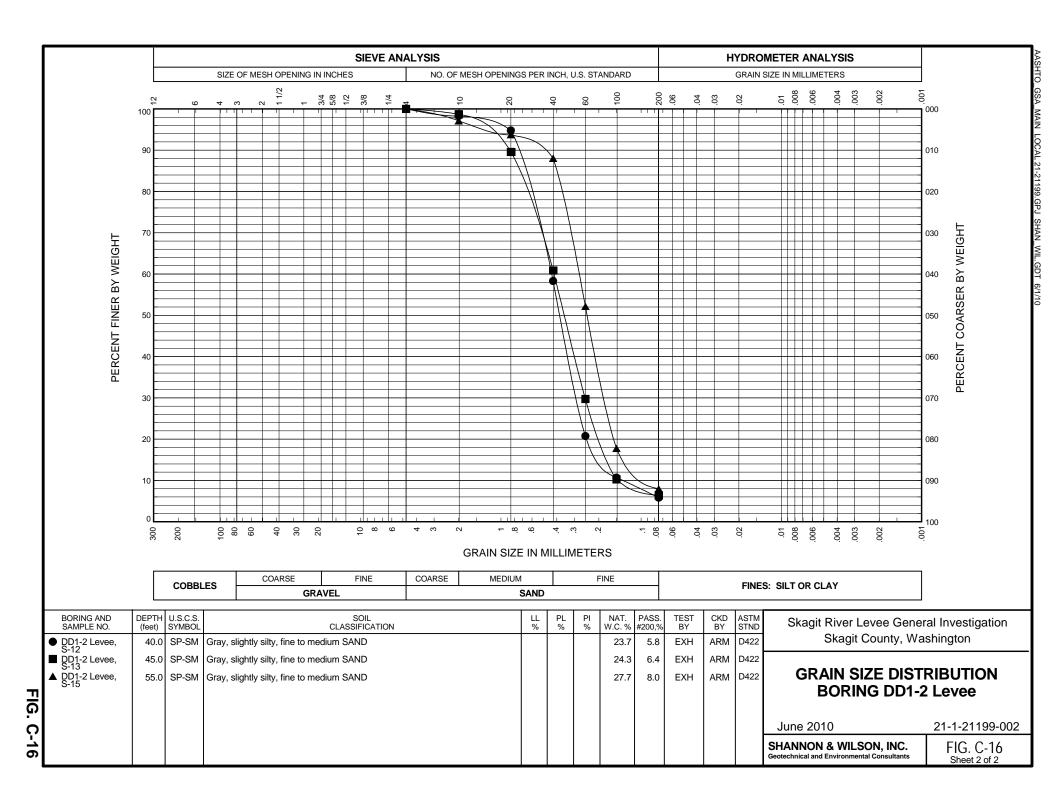


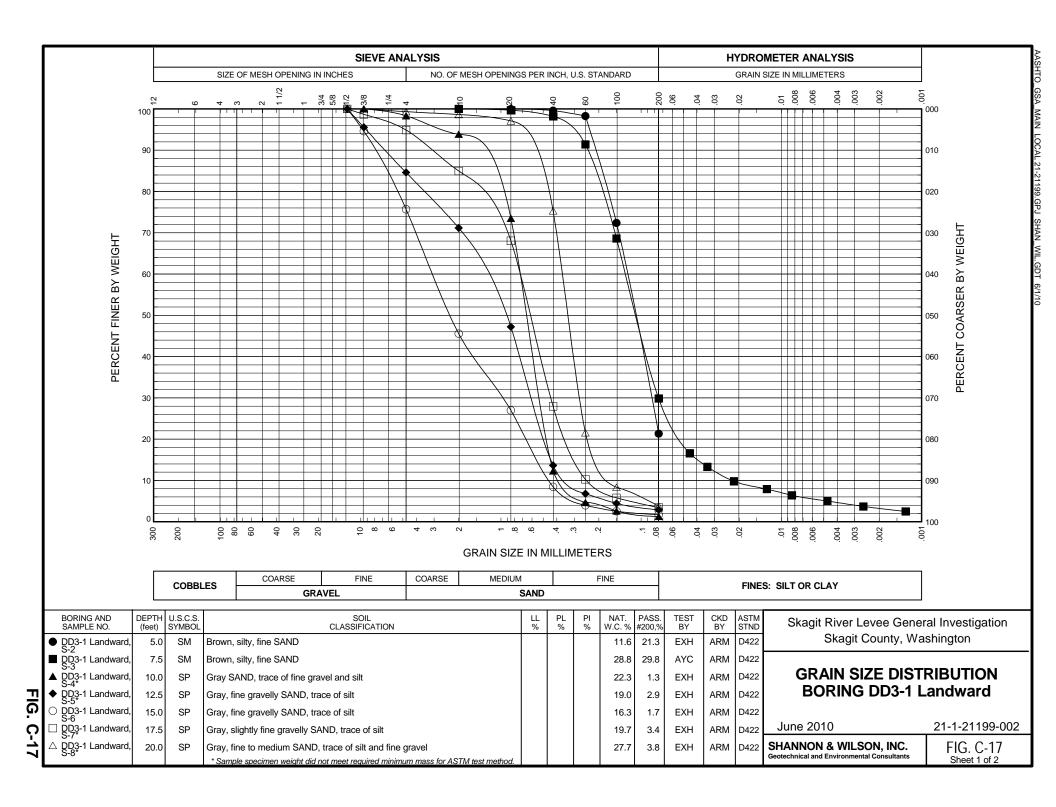


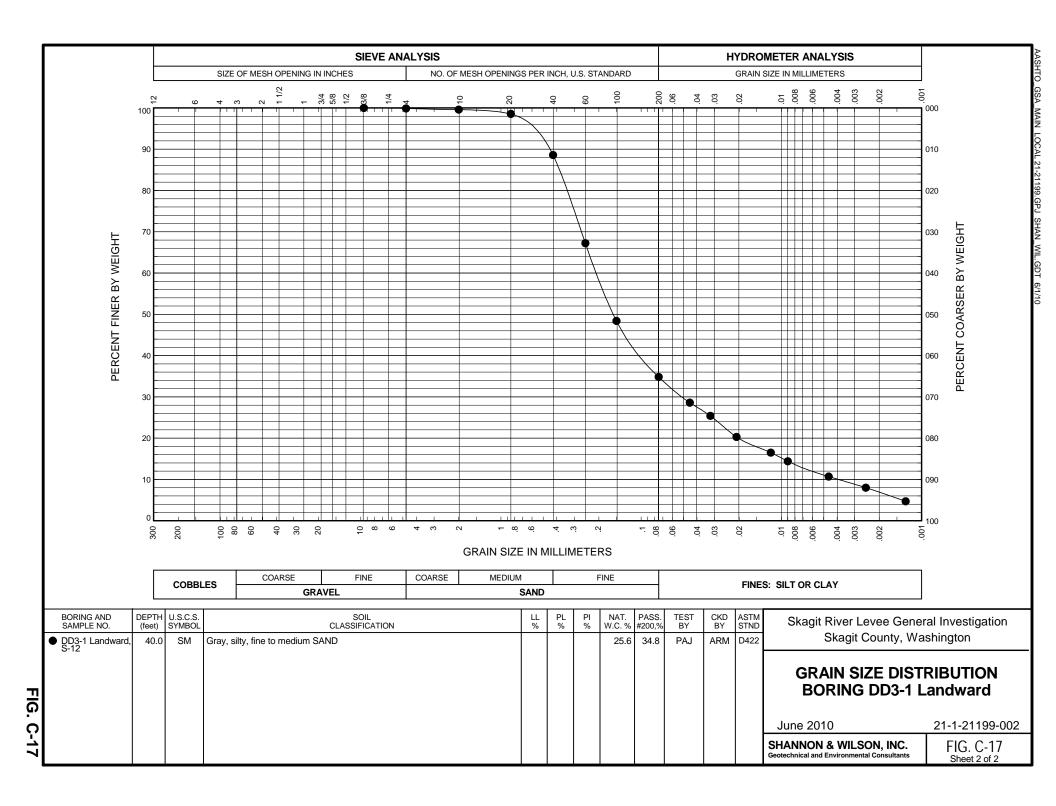


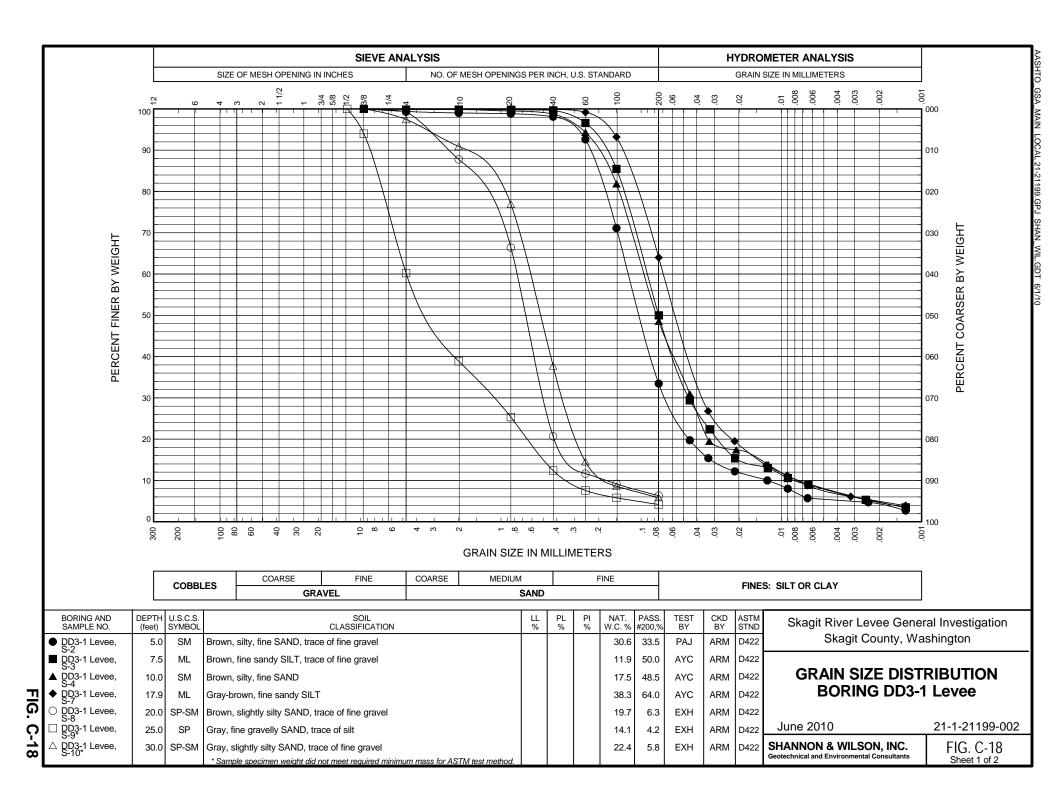


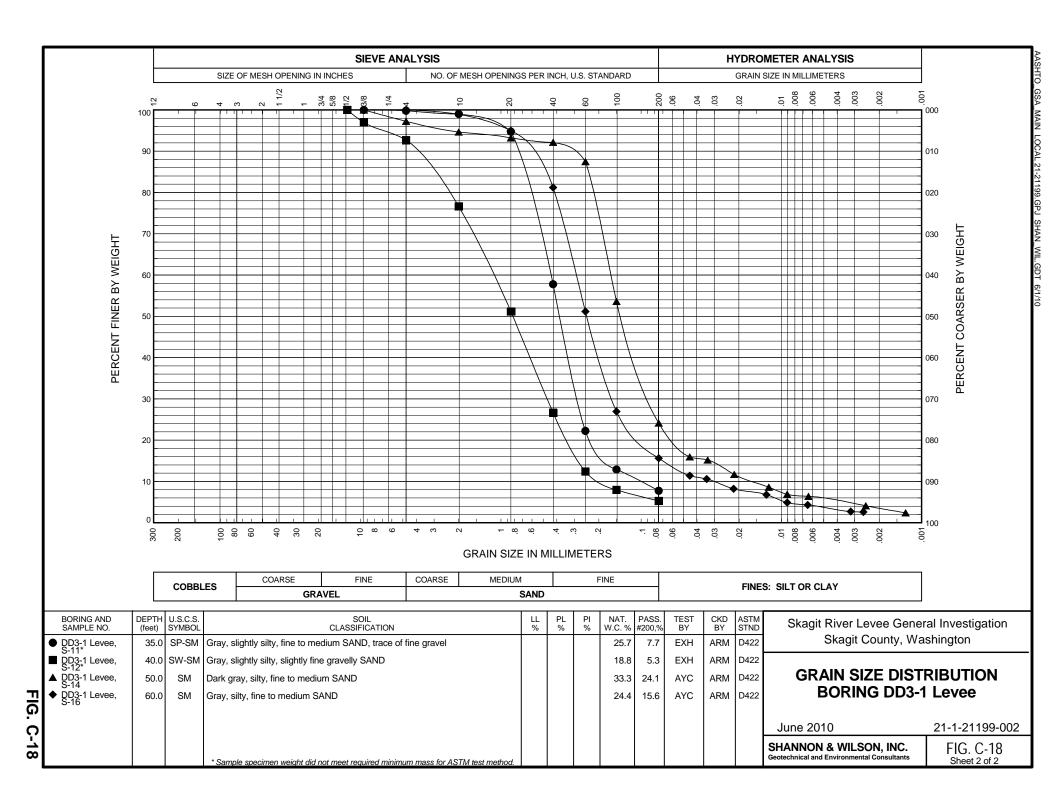


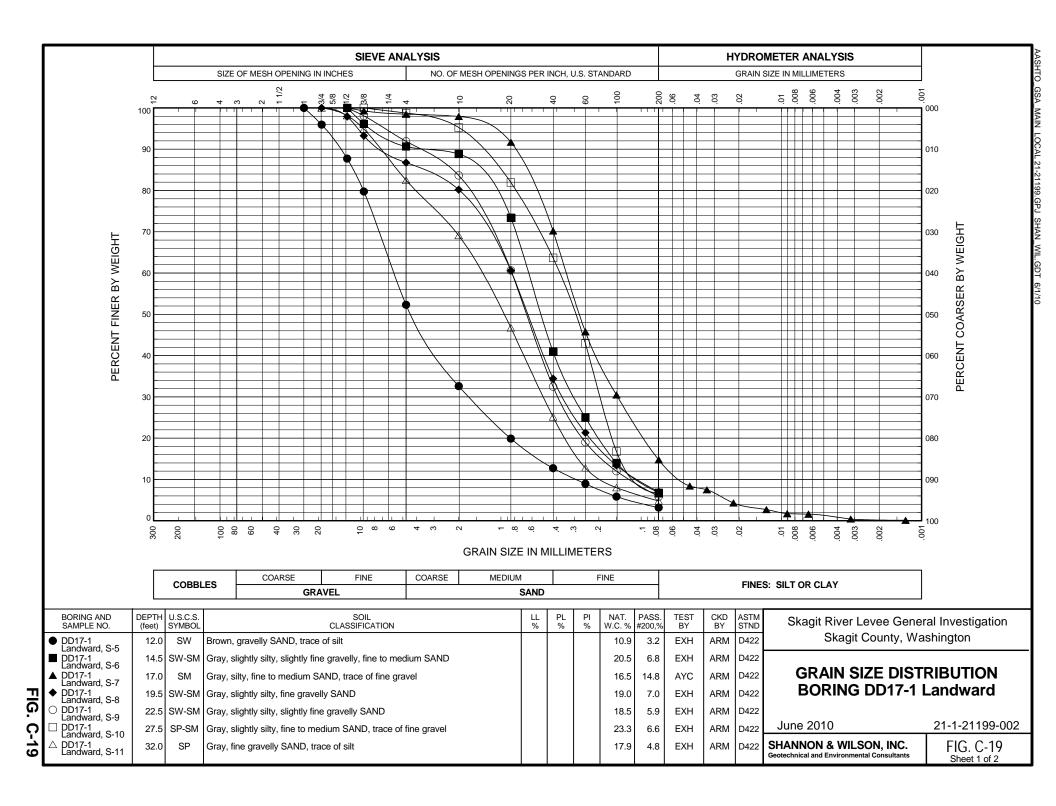


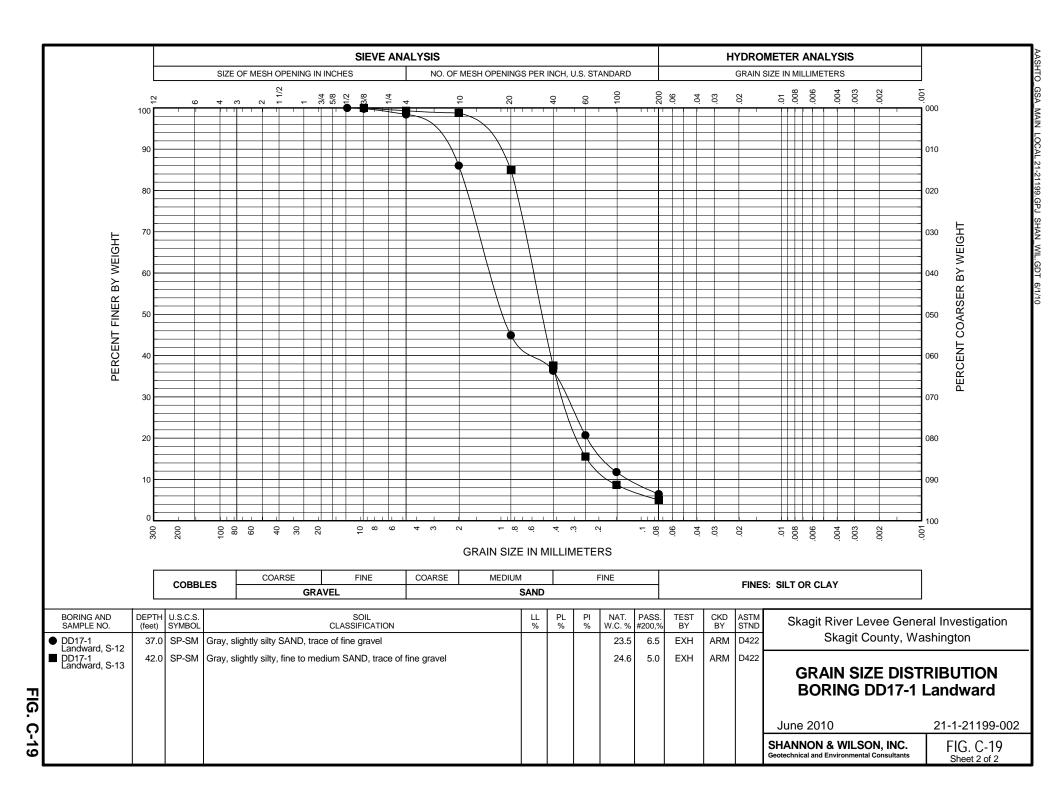


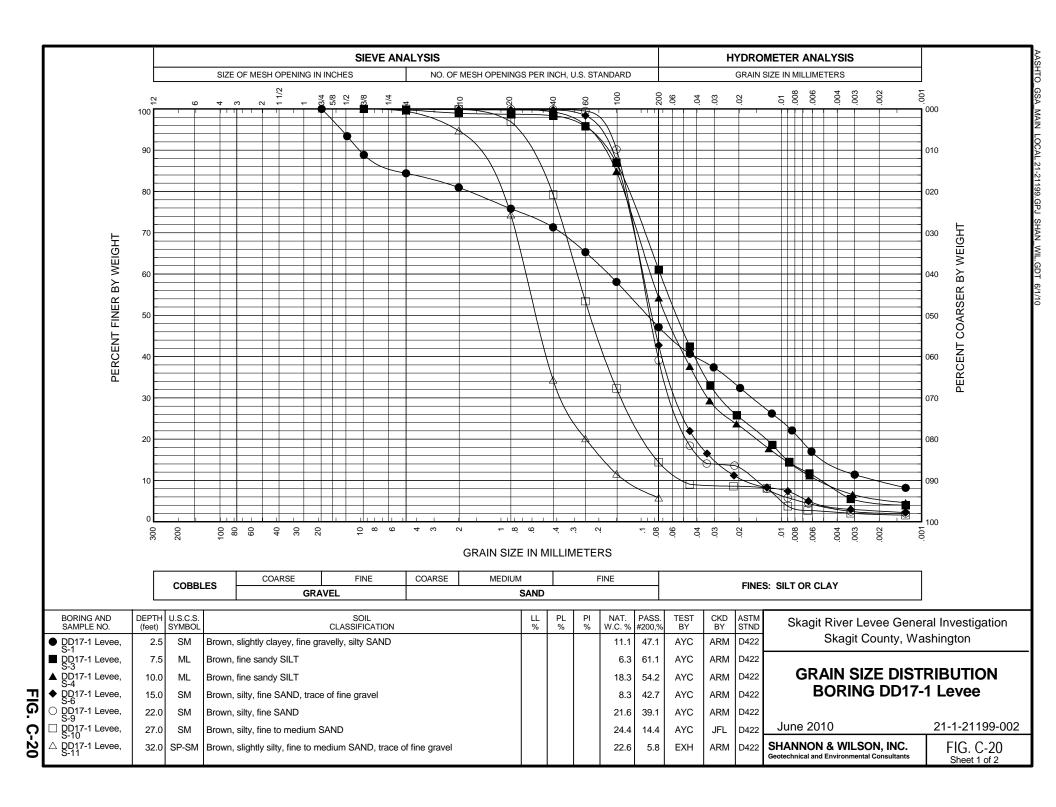


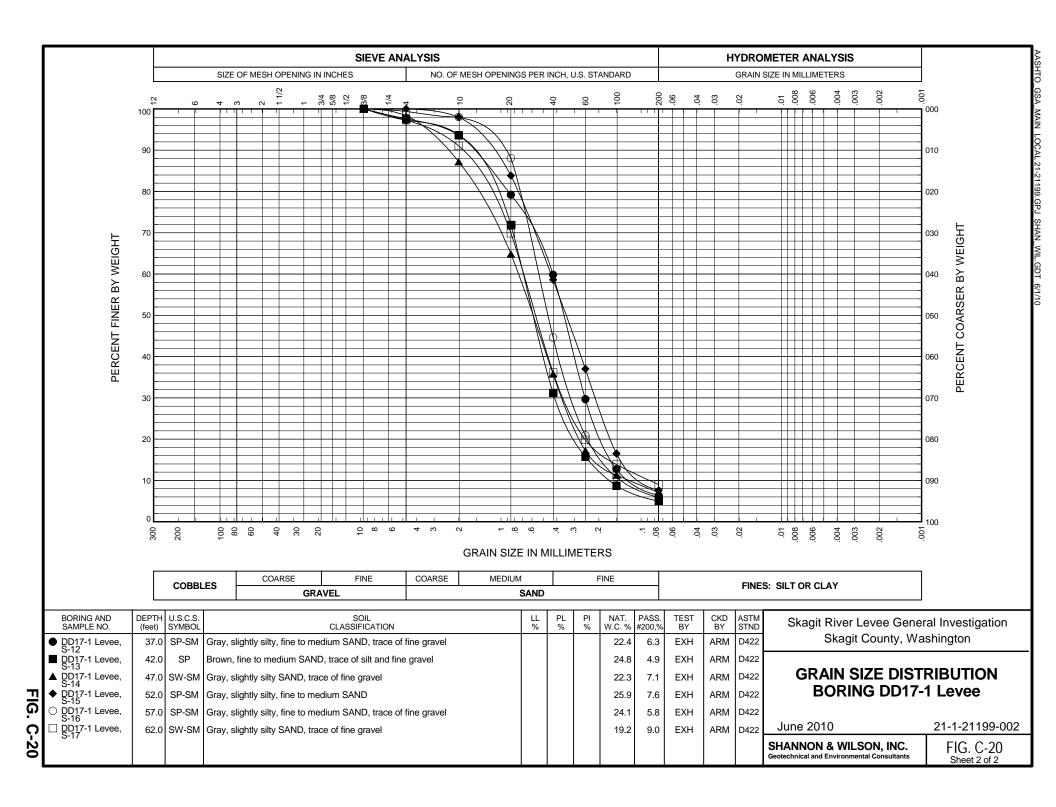


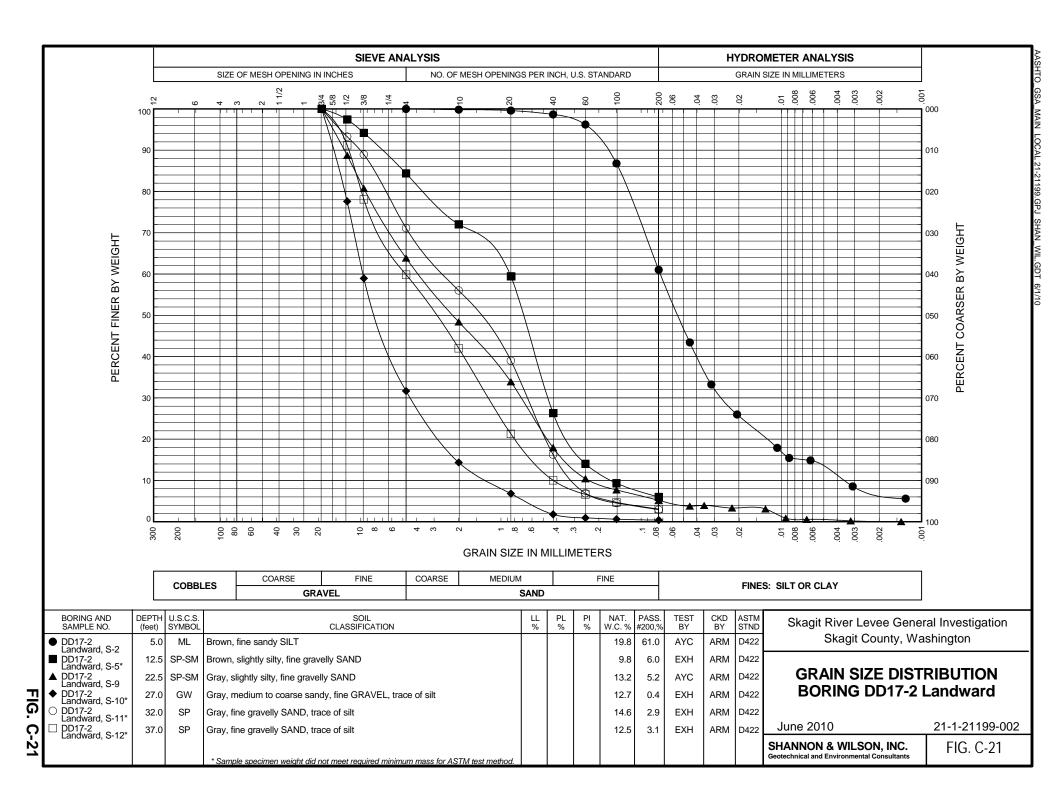


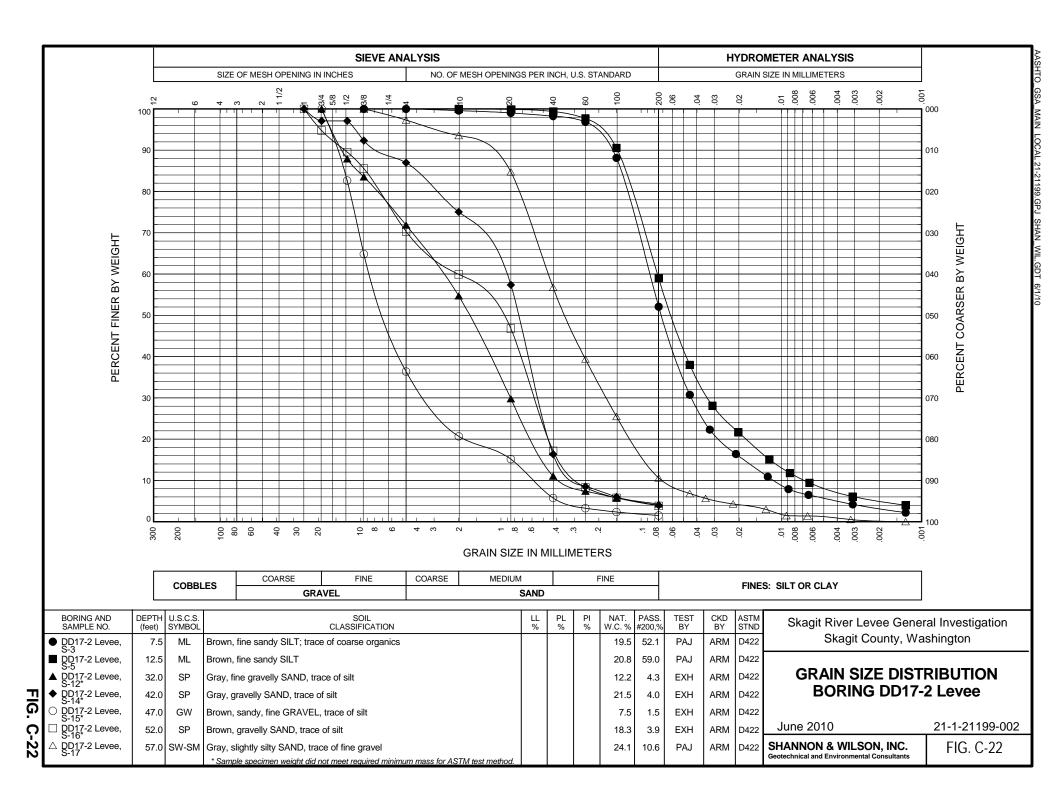


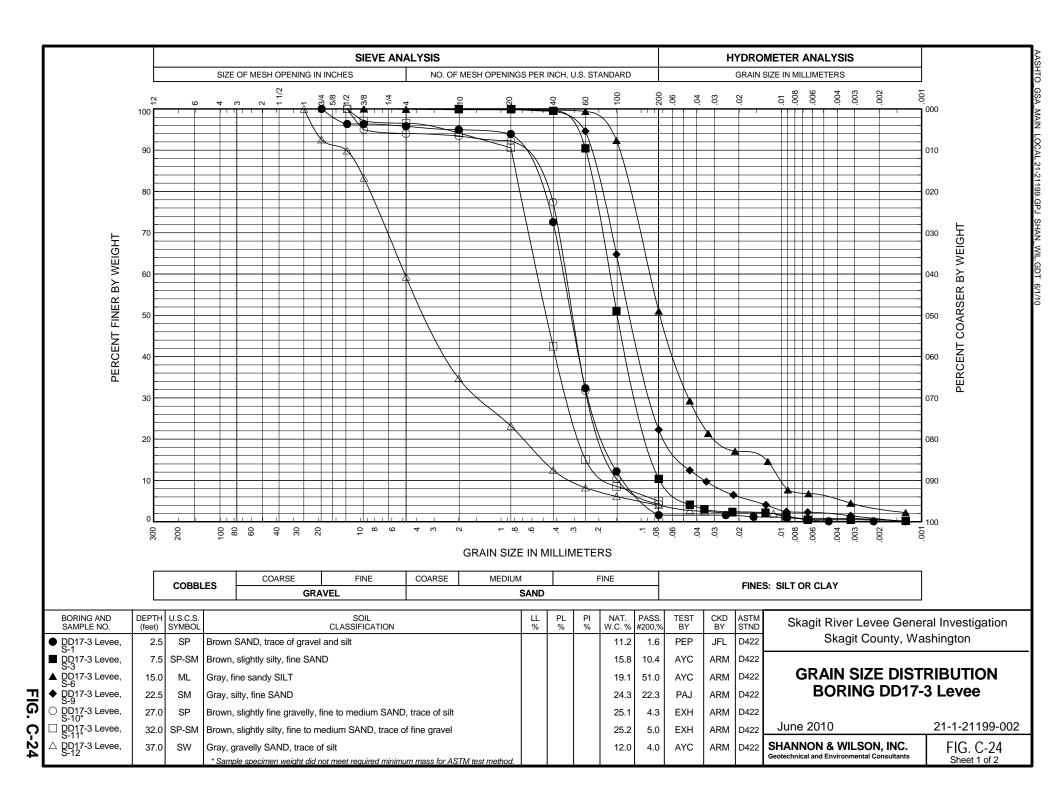


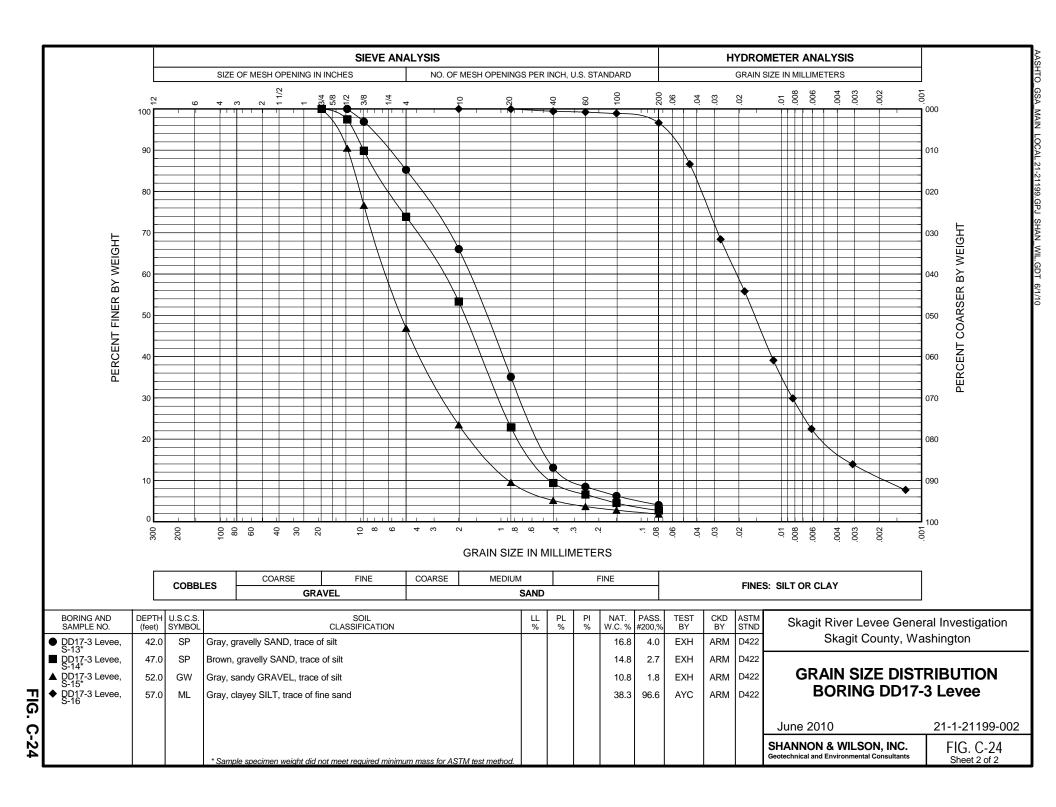


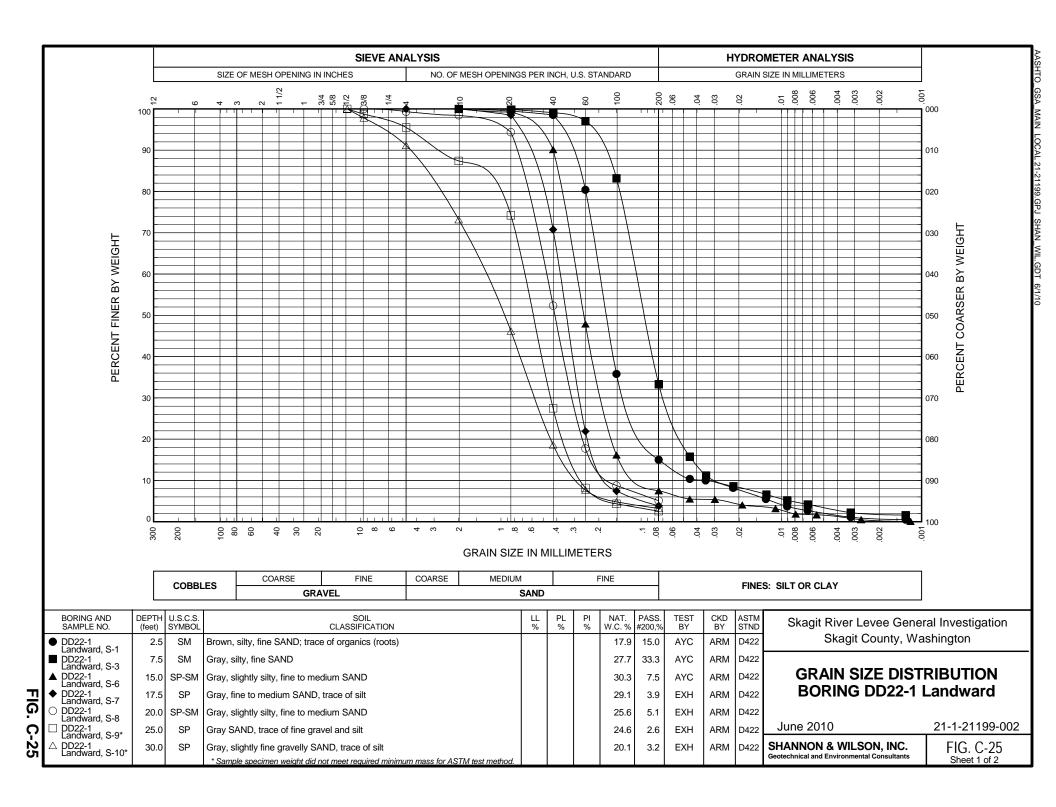


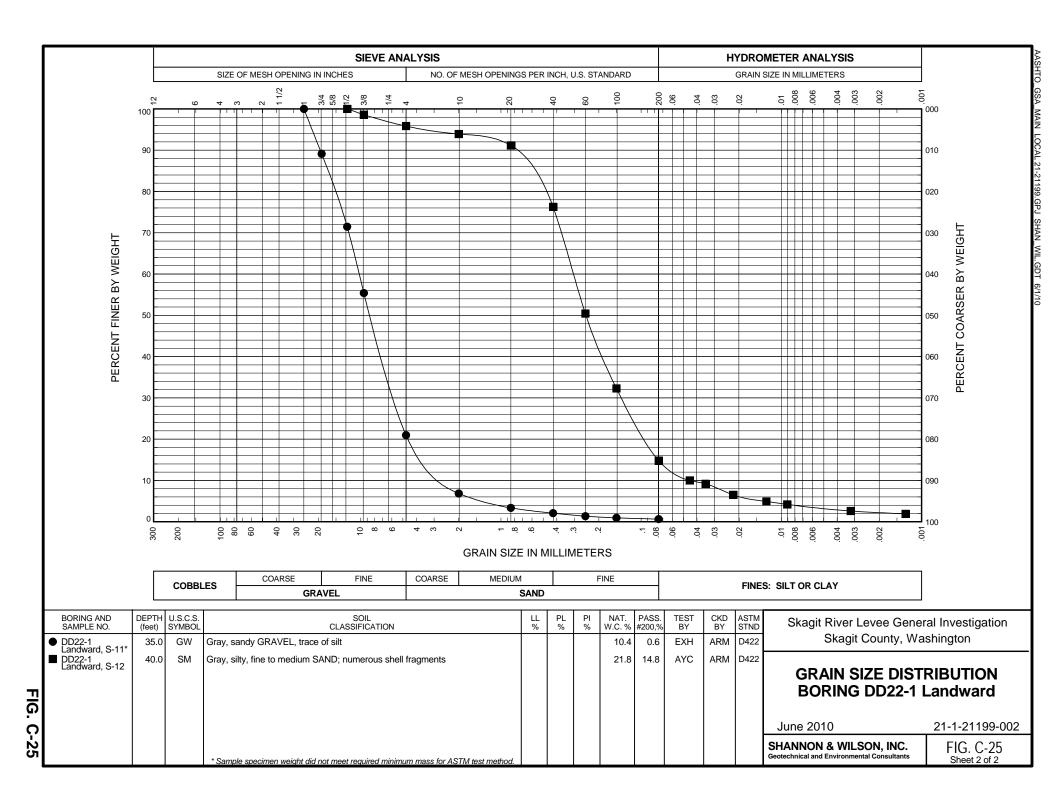


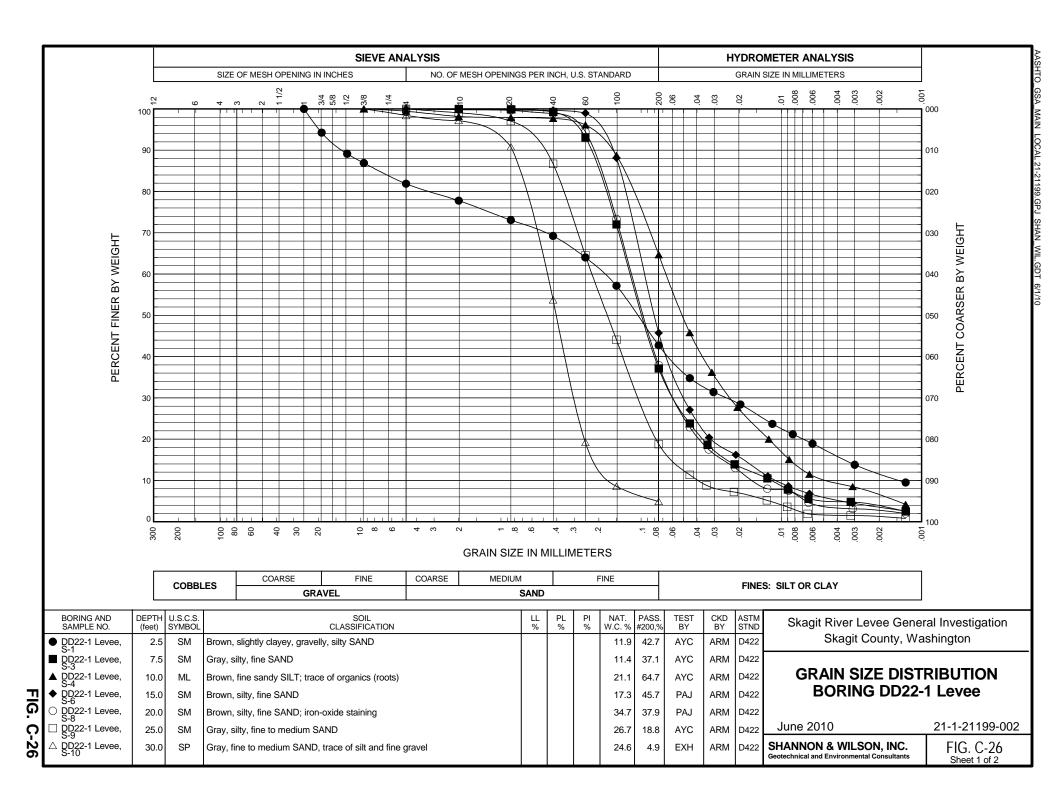


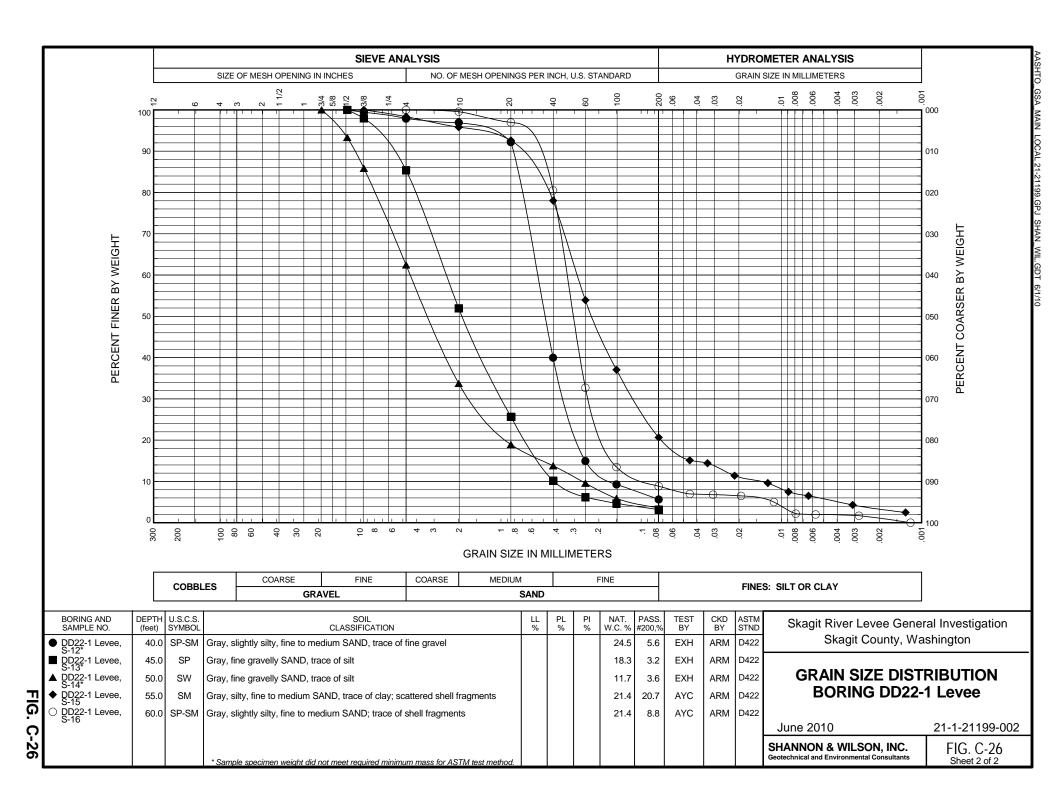


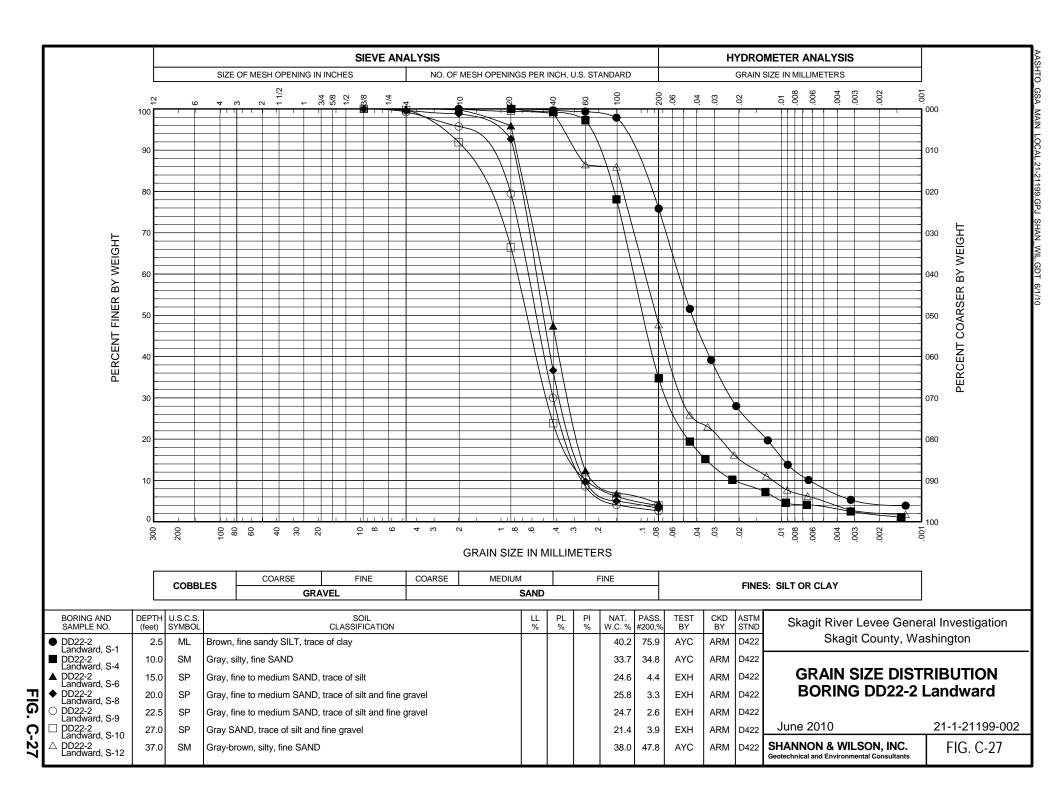


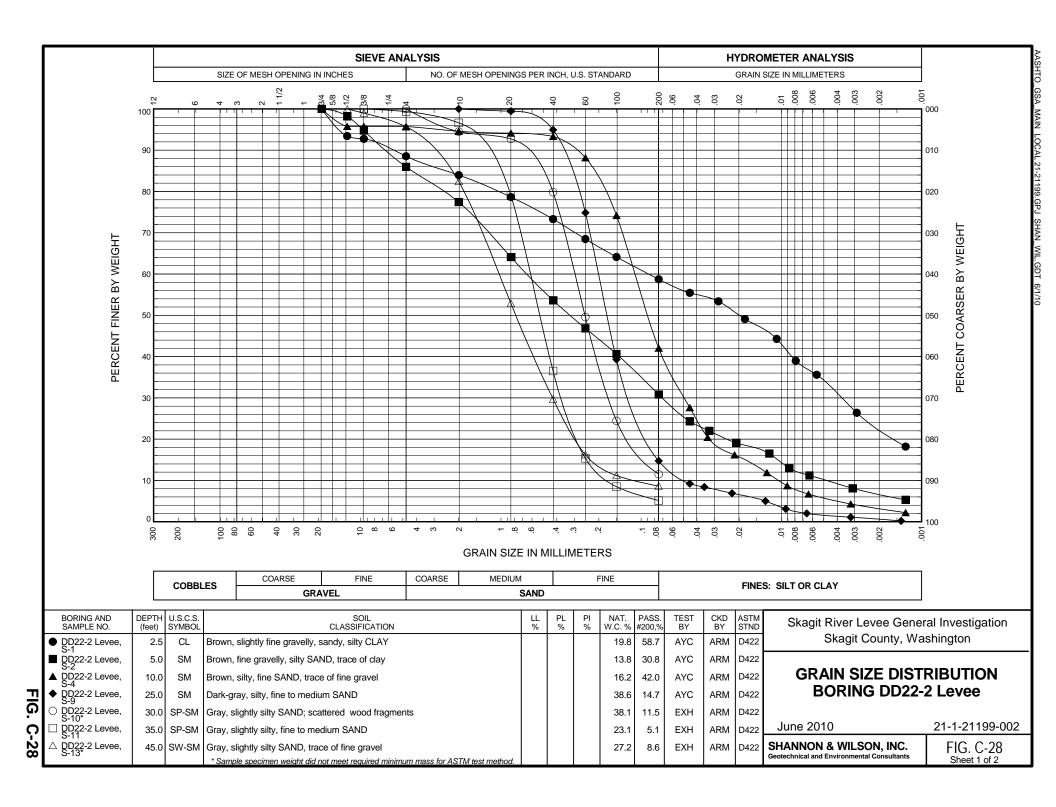


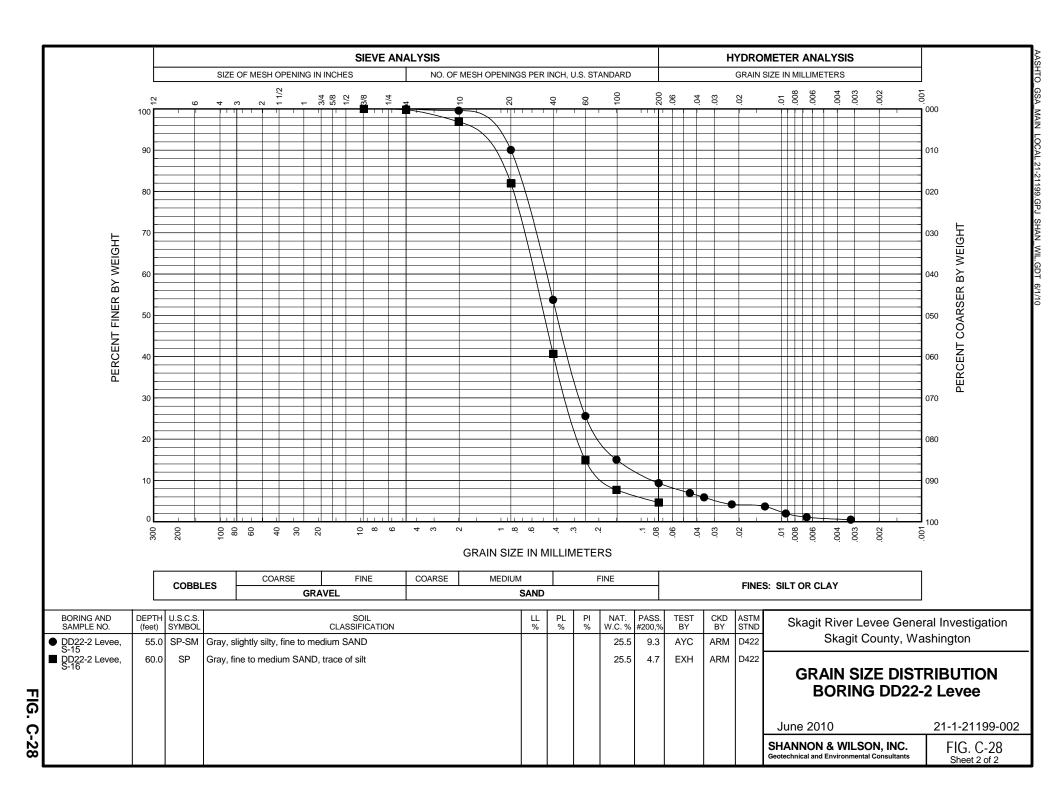


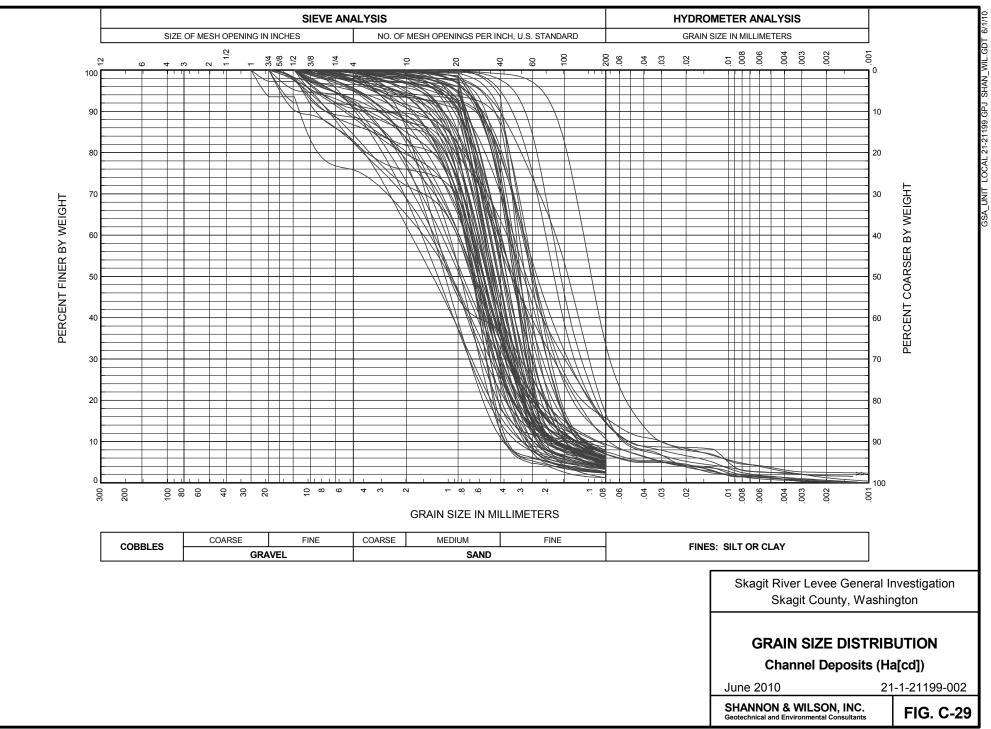












SHAN_WIL.GDT LOCAL 21-21199.GPJ

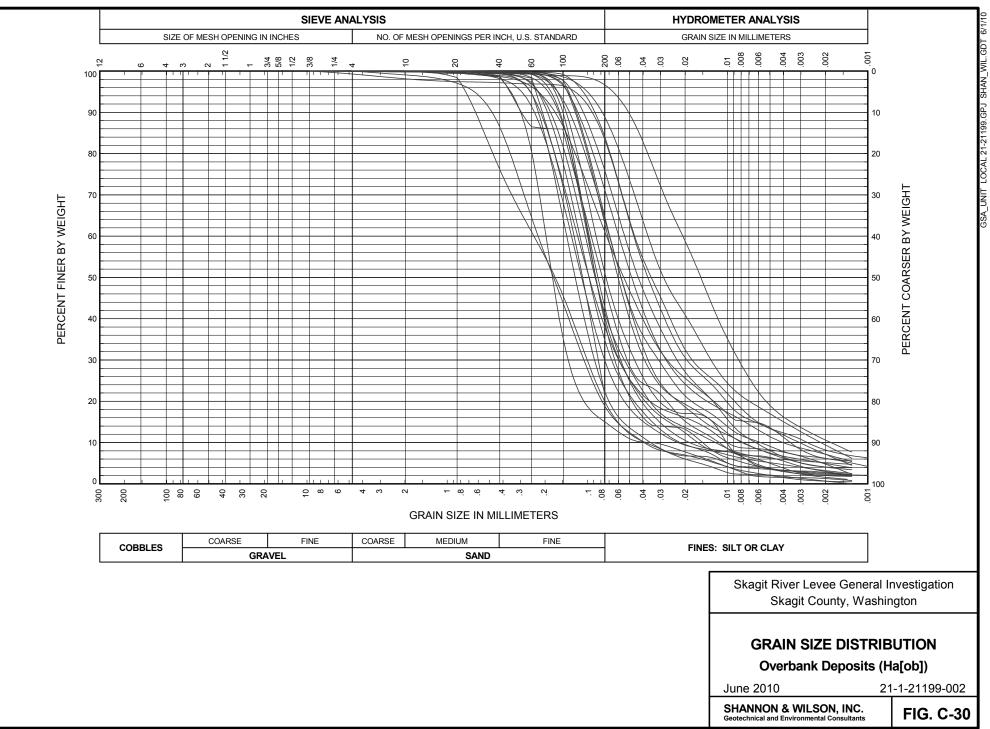
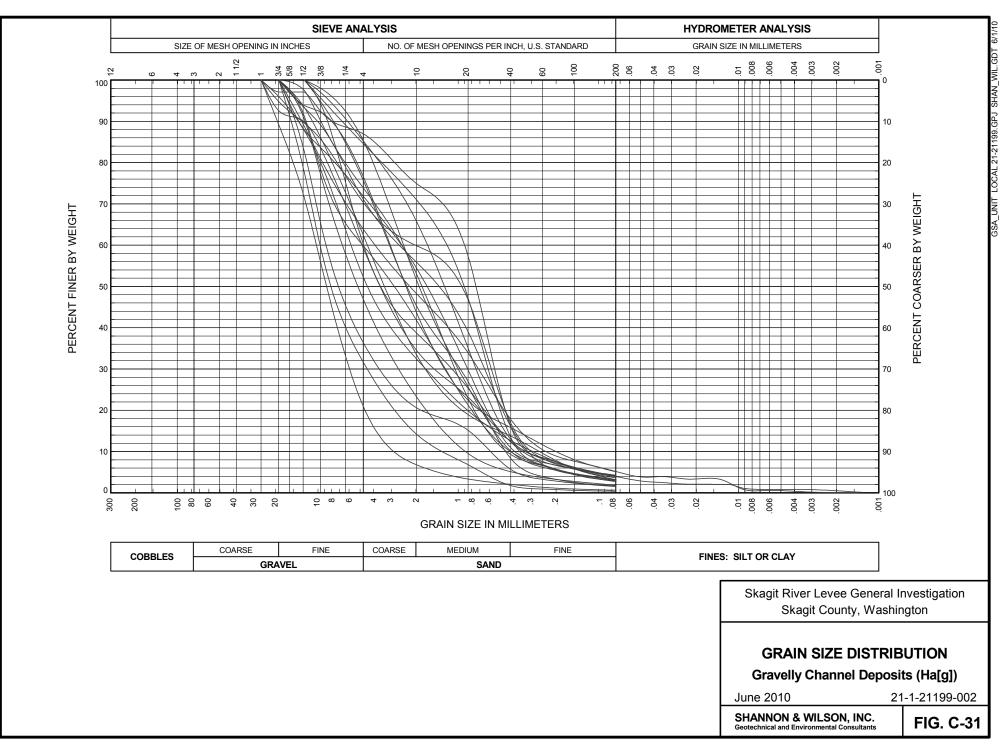
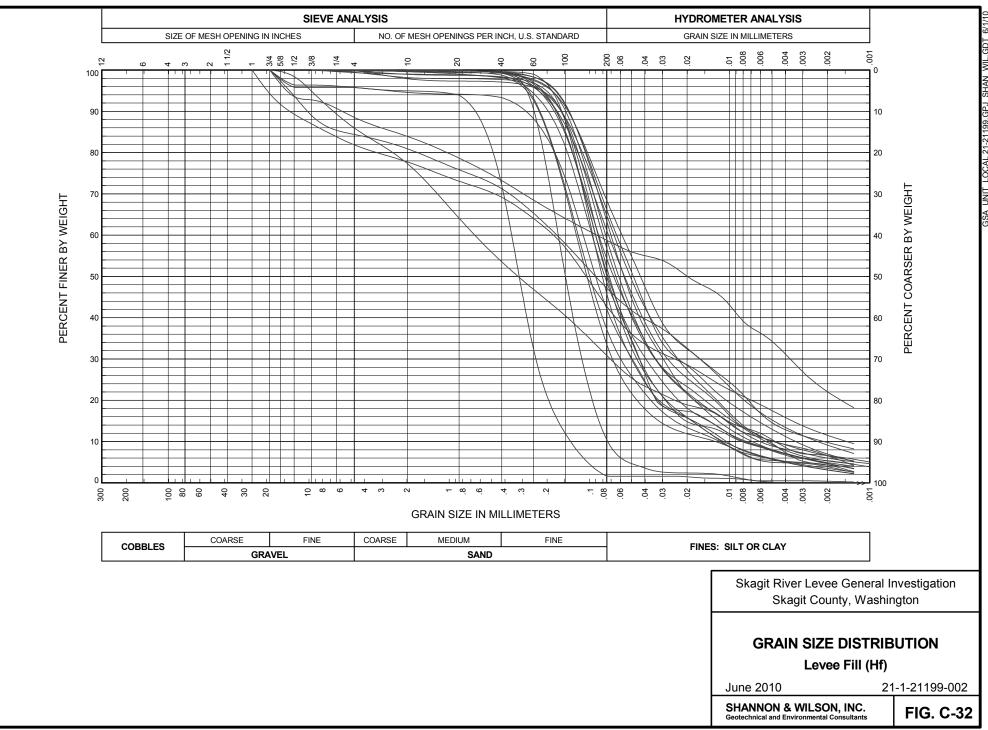




FIG. C μü LOCAL 21-21199.GPJ SHAN_WIL.GD1

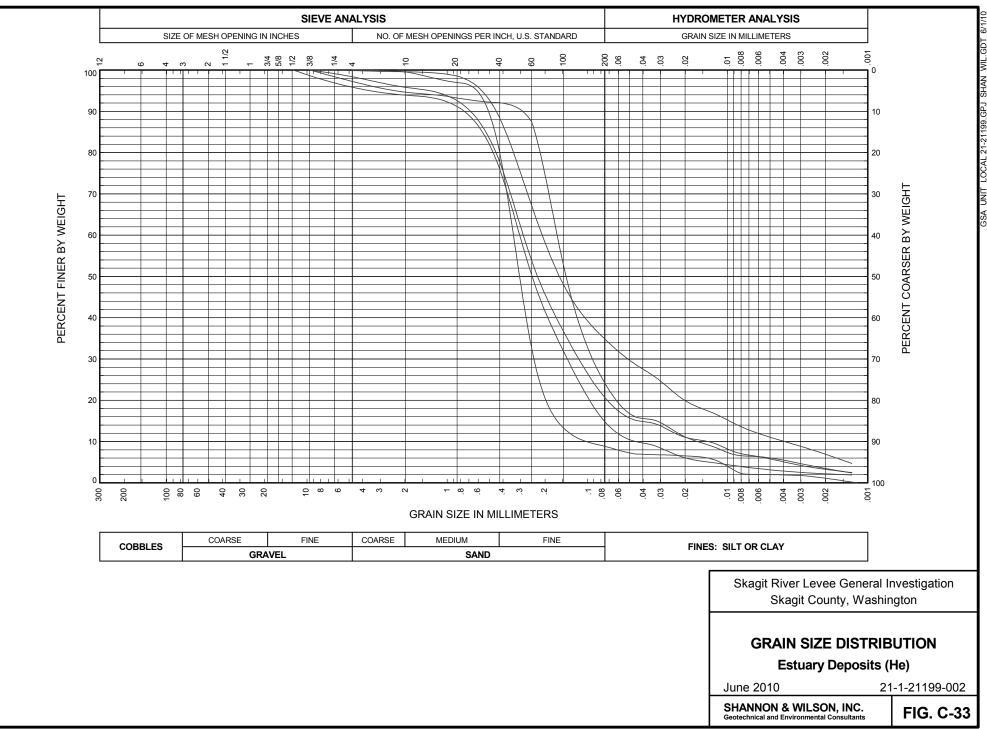


FIG.

C မ္က GSA_UNIT_LOCAL 21-21199.GPJ_SHAN_WIL.GDT

ONE DIMENSIONAL CONSOLIDATION TEST NO. 1 SUMMARY OF TEST DATA

BoringDD17-3 LeveeSampleS-17Depth, ft62.9

 Tested
 By / Date
 AKV
 12/3/2009

 Calc.
 By / Date
 AKV
 1/6/2010

 Check
 By / Date
 AJC
 1/15/2010

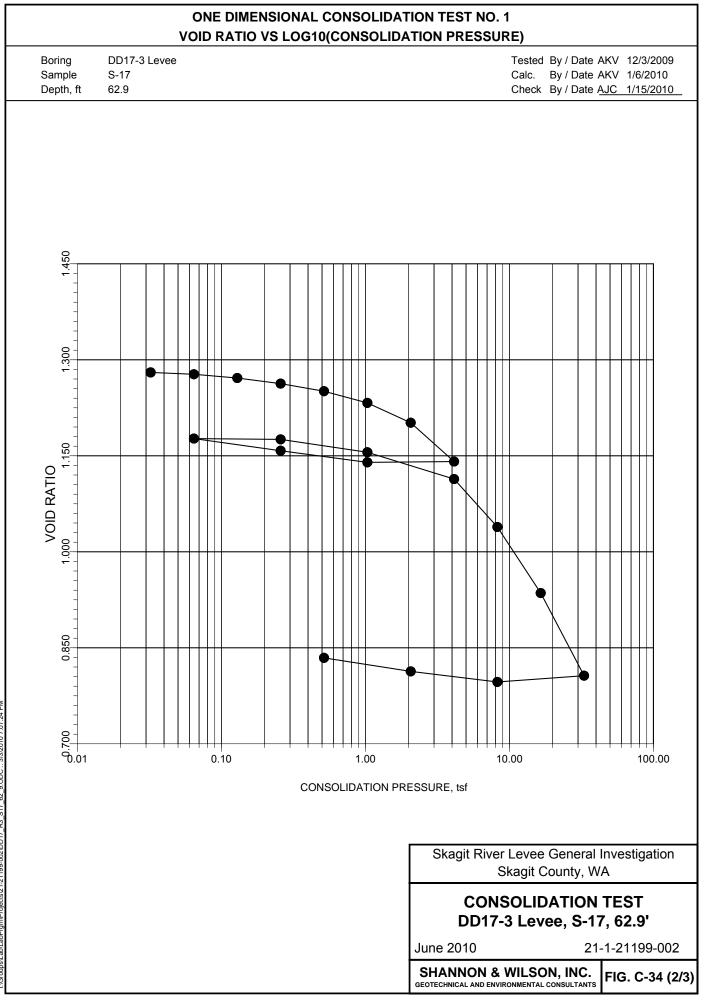
94

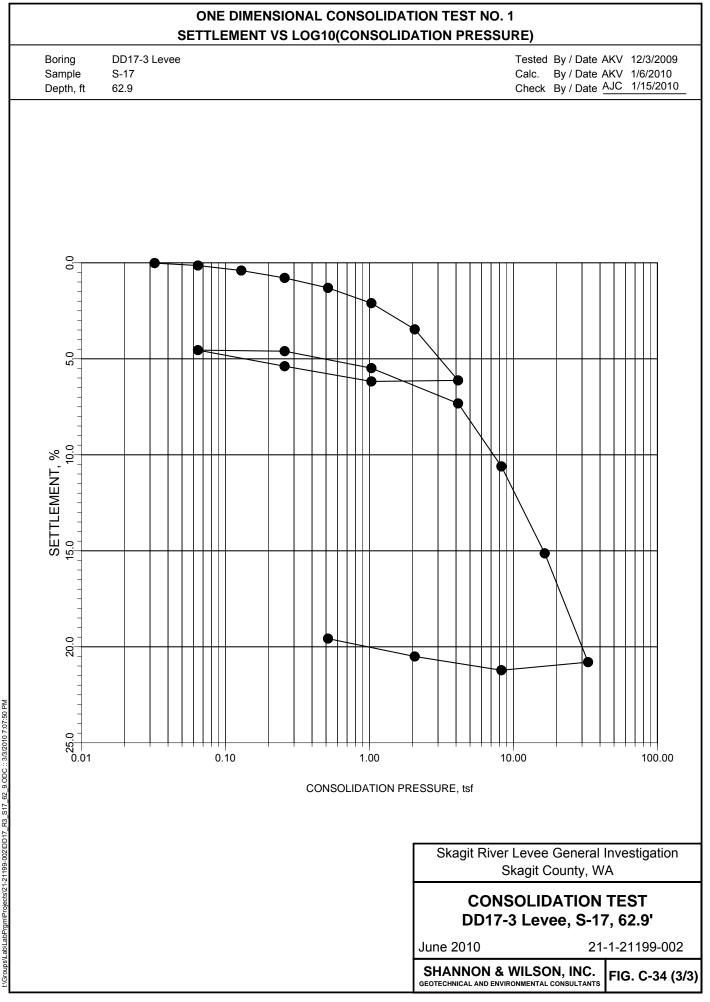
112

Saturation, % :

CLASSIFICATION: Gray, slightly clayey, SILT; scattered organics;	SPECIMEN DATA:	Before Test	After <u>Test</u>
	Height, inches :	.786	.632
SAMPLE DATA:	Diameter, inches :	2.503	2.503
Spec. Grav. (est.) : 2.70	Wet Density, pcf:	106.9	123.4
Specimen : UNDISTURBED	Dry Density, pcf:	73.9	91.6
•	Water Content, % :	44.7	34.7
	Void Ratio :	1.280	.834

S	рес		Defl	Consol					Coeff of	Coeff of
L	oad	d 100	Corr	Pressure	Settlement	Void	t 50	d 50	Consol	Perm
	kg	0.01mm	0.01mm	tsf	%	Ratio	min.	0.01mm	cm2/sec	cm/sec
	.1	.9	.6	.03	.0	1.280	.3	.8	1.09E-02	
	.2	4.7	1.8	.06	.1	1.277	.2	4.1	1.63E-02	6.36E-07
	.4	11.9	3.8	.13	.4	1.271	.2	11.0	1.62E-02	6.57E-07
	.8	22.4	6.7	.26	.8	1.263	.2	21.4	1.61E-02	4.78E-07
	1.6	36.7	10.6	.52	1.3	1.251	.2	35.4	1.60E-02	3.23E-07
	3.2	57.0	15.0	1.03	2.1	1.233	.2	55.1	1.57E-02	2.42E-07
	6.4	89.0	19.8	2.06	3.5	1.202	.2	85.3	1.53E-02	2.02E-07
1	2.8	148.6	26.3	4.13	6.1	1.141	.2	139.3	1.46E-02	1.87E-07
	3.2	144.2	20.8	1.03	6.2	1.140	.1	145.3	2.88E-02	
	.8	122.2	14.7	.26	5.4	1.158	.2	126.1	1.46E-02	
	.2	101.7	10.9	.06	4.5	1.177	.2	107.3	1.48E-02	
	.8	105.0	13.0	.26	4.6	1.176	.2	104.0	1.49E-02	4.36E-08
	3.2	128.7	19.1	1.03	5.5	1.155	.2	127.1	1.46E-02	1.67E-07
1	2.8	172.5	26.2	4.13	7.3	1.114	.2	167.5	1.41E-02	8.37E-08
2	25.6	243.7	32.0	8.26	10.6	1.039	.2	231.8	1.32E-02	1.05E-07
5	51.2	341.8	39.7	16.52	15.1	.936	.2	327.7	1.20E-02	6.57E-08
10)2.4	449.3	34.0	33.04	20.8	.806	.2	432.8	1.05E-02	3.59E-08
2	25.6	449.3	25.6	8.26	21.2	.797	.2	450.0	1.01E-02	
	6.4	428.5	19.2	2.06	20.5	.813	.2	430.6	1.03E-02	
	1.6	406.4	15.6	.52	19.6	.834	.2	410.4	1.05E-02	


Skagit River Levee General Investigation Skagit County, WA


CONSOLIDATION TEST DD17-3 Levee, S-17, 62.9'

June 2010

21-1-21199-002

SHANNON & WILSON, INC. GEOTECHNICAL AND ENVIRONMENTAL CONSULTANTS FIG. C-34 (1/3)

ONE DIMENSIONAL CONSOLIDATION TEST NO. 2 SUMMARY OF TEST DATA

BoringDD22-2 LandwardSampleS-2Depth, ft6.4

 Tested
 By / Date
 AKV
 12/10/2009

 Calc.
 By / Date
 AKV
 1/6/2010

 Check
 By / Date
 AJC
 1/15/2010

CLASSIFICATION:

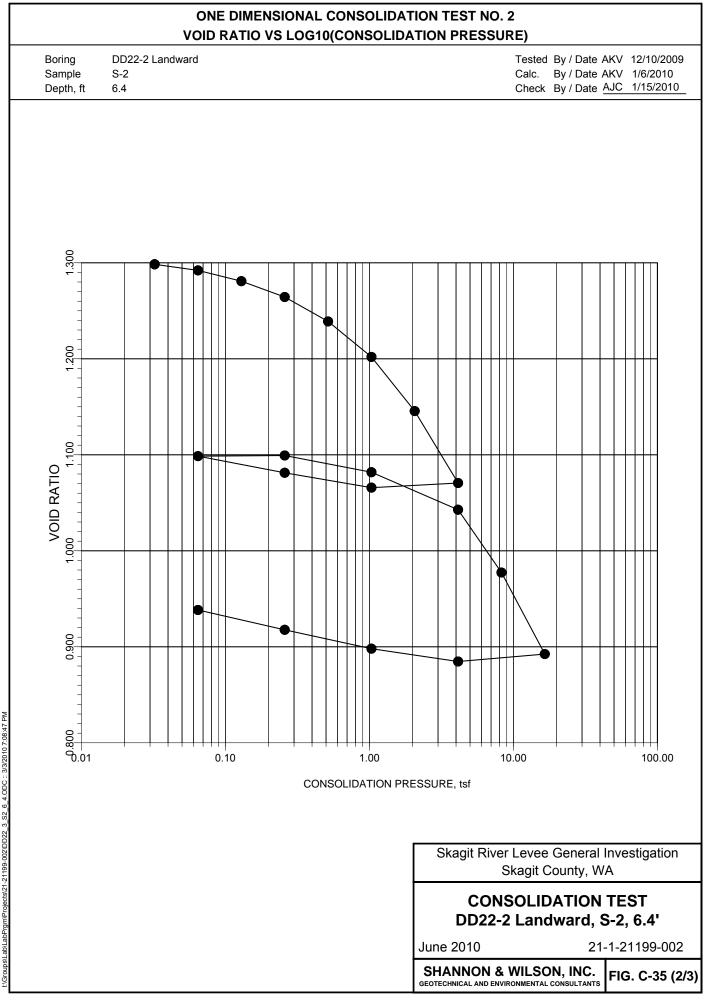
Gray, slightly clayey SILT; ML

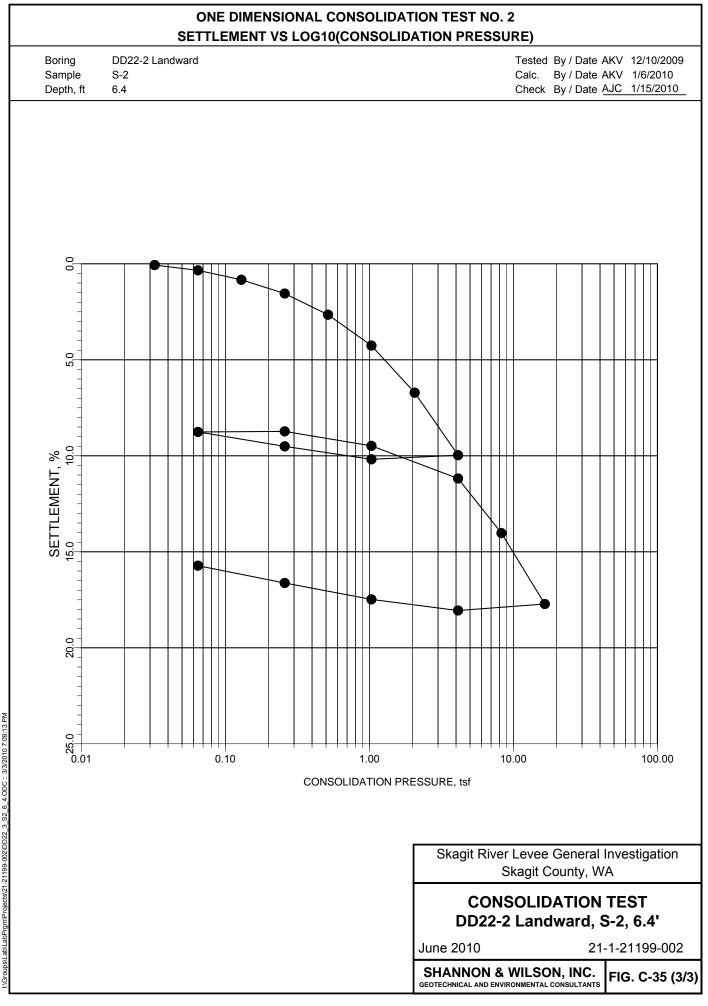
SAMPLE DATA:

Spec. Grav. (est.) : 2.70 Specimen : UNDISTURBED

SPECIMEN DATA:	Before	After
	Test	Test
Height, inches :	.788	.664
Diameter, inches :	2.502	2.502
Wet Density, pcf:	108.0	118.3
Dry Density, pcf:	73.3	86.8
Water Content, % :	47.5	36.4
Void Ratio :	1.298	.938
Saturation, % :	99	104

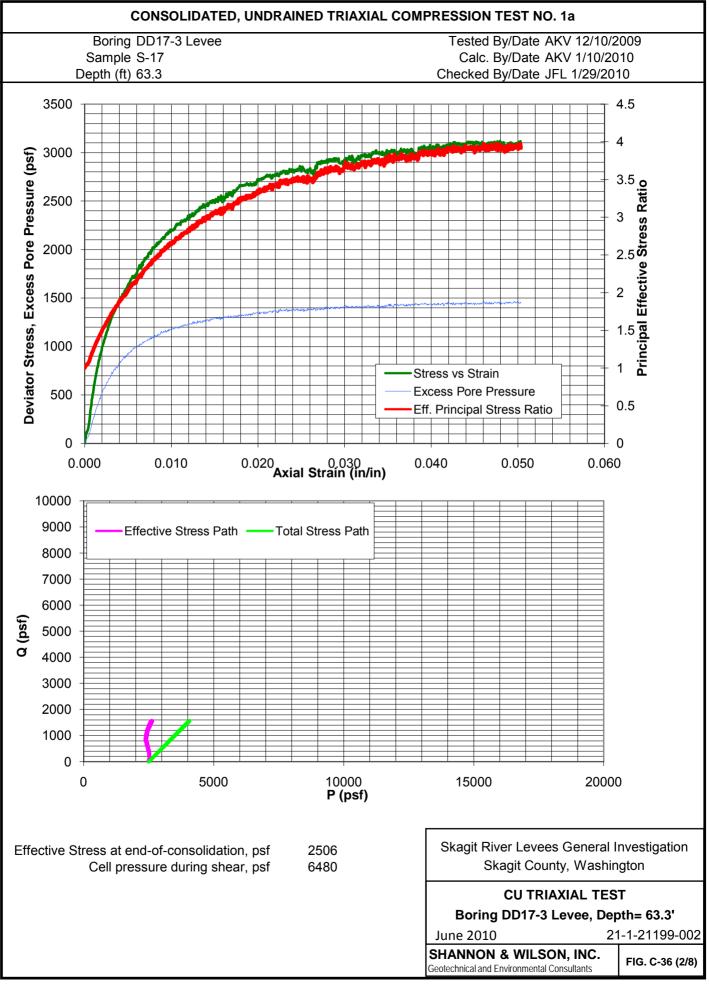
Spec		Defl	Consol					Coeff of	Coeff of
Load	d 100	Corr	Pressure	Settlement	Void	t 50	d 50	Consol	Perm
kg	0.01mm	0.01mm	tsf	%	Ratio	min.	0.01mm	cm2/sec	cm/sec
4	2.0	6	02	4	1 000	2	4.4	2.055.02	
.1	2.0	.6	.03	.1	1.298	.2	1.4	2.05E-02	
.2	8.7	1.8	.06	.3	1.292	.2	6.5	1.42E-02	1.22E-06
.4	20.5	3.8	.13	.8	1.281	.2	17.0	1.62E-02	1.23E-06
.8	37.8	6.7	.26	1.6	1.264	.2	32.6	1.60E-02	8.91E-07
1.6	63.7	10.6	.52	2.7	1.239	.2	57.0	1.57E-02	6.69E-07
3.2	100.3	15.0	1.03	4.3	1.202	.3	91.4	9.81E-03	3.06E-07
6.4	154.2	19.8	2.07	6.7	1.146	.2	141.2	1.81E-02	4.30E-07
12.8	225.9	26.3	4.13	10.0	1.071	.2	208.9	1.70E-02	2.68E-07
3.2	224.6	20.8	1.03	10.2	1.066	.2	225.7	1.56E-02	
.8	205.1	14.7	.26	9.5	1.081	.2	210.5	1.57E-02	
.2	186.2	10.9	.06	8.8	1.099	.3	193.2	9.70E-03	
.8	187.7	13.0	.26	8.7	1.099	.2	185.8	1.61E-02	2.37E-08
3.2	208.9	19.1	1.03	9.5	1.082	.1	204.8	1.93E-02	1.89E-07
12.8	250.1	26.2	4.13	11.2	1.043	.2	243.6	1.63E-02	8.95E-08
25.6	312.8	32.0	8.27	14.0	.977	.2	297.4	1.46E-02	1.00E-07
51.2	394.4	39.7	16.53	17.7	.892	.2	398.0	1.23E-02	5.50E-08
12.8	395.5	34.0	4.13	18.1	.885	.2	396.4	1.38E-02	
3.2	375.4	25.6	1.03	17.5	.898	.2	379.0	1.39E-02	
.8	351.9	19.2	.26	16.6	.918	.3	359.8	7.81E-03	
.2	330.3	15.6	.06	15.7	.938	.6	337.6	3.92E-03	

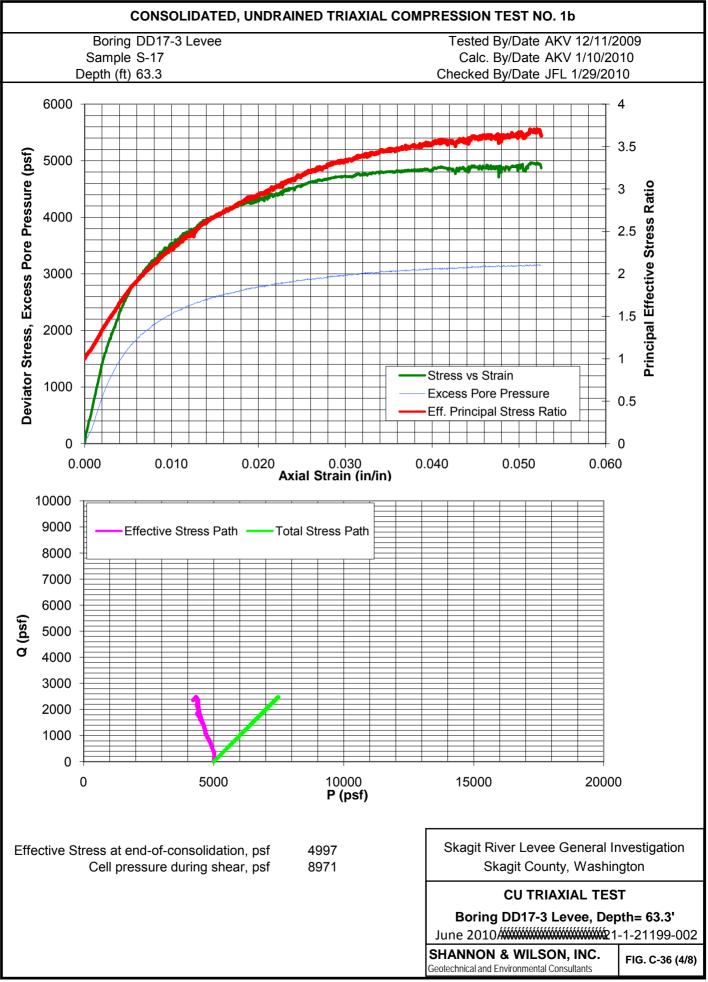

Skagit River Levee General Investigation Skagit County, WA


CONSOLIDATION TEST DD22-2 Landward, S-2, 6.4'

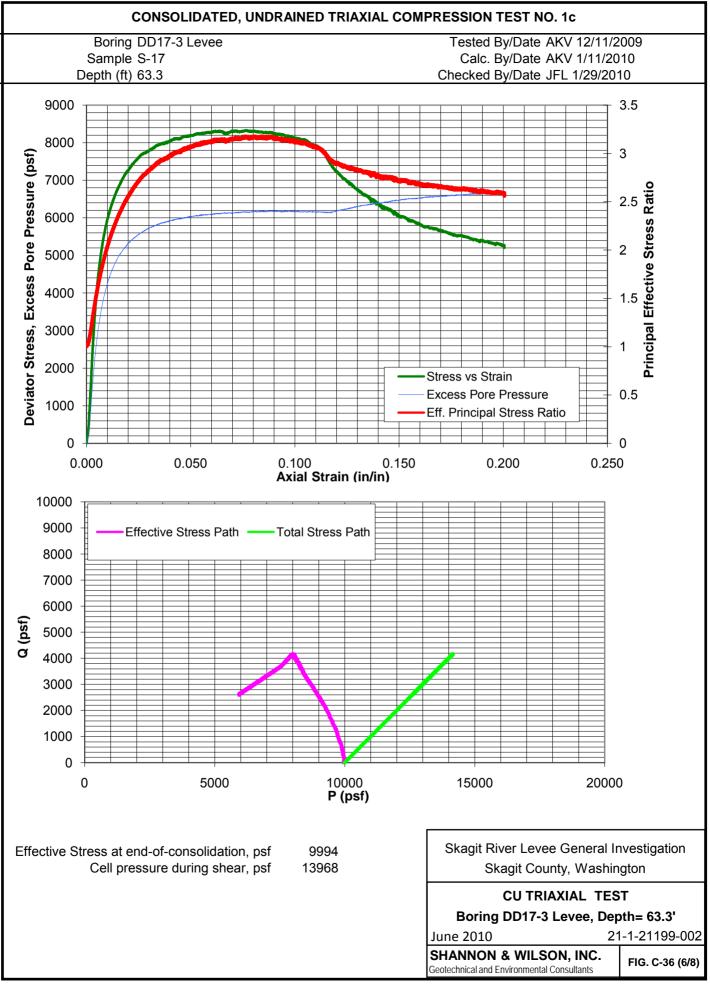
June 2010

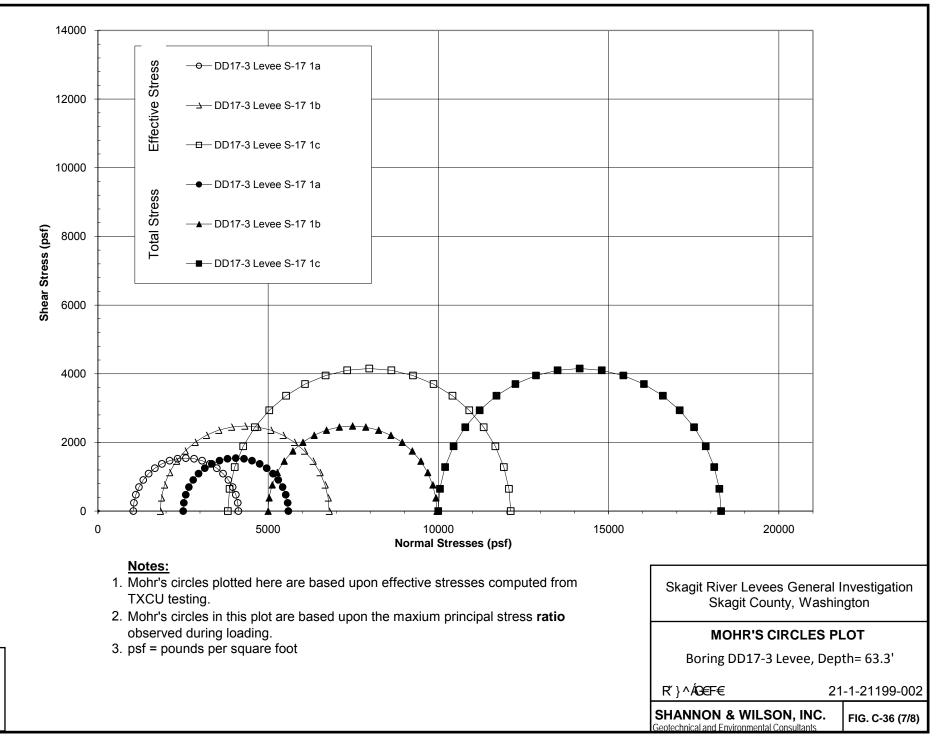
21-1-21199-002

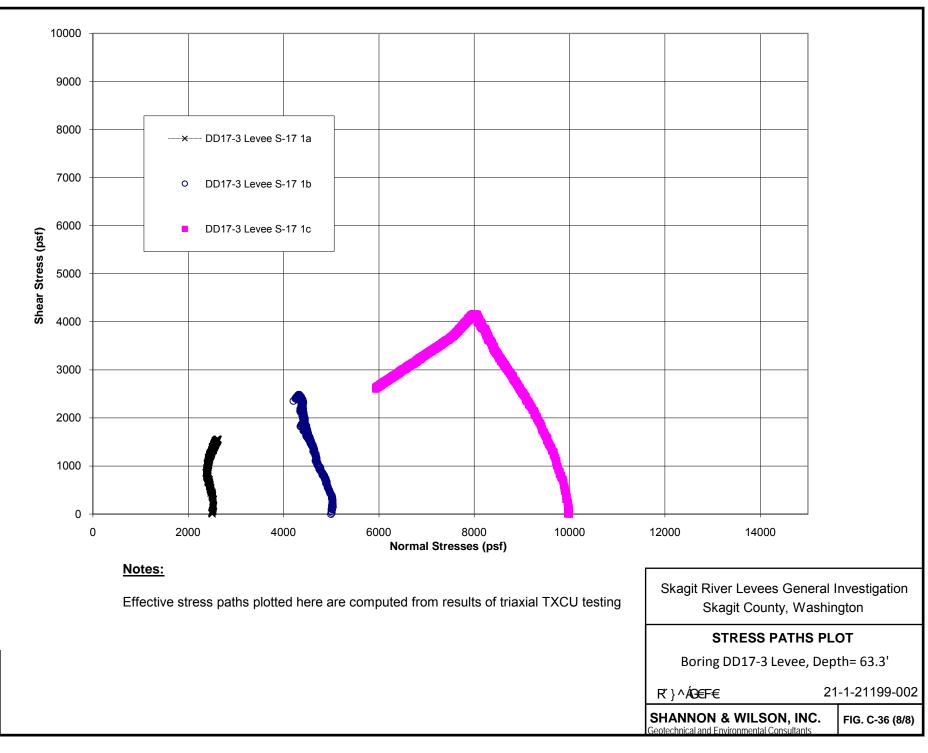

SHANNON & WILSON, INC. GEOTECHNICAL AND ENVIRONMENTAL CONSULTANTS FIG. C-35 (1/3)


3/3/2010-TXCU_DD17-3Levee_S17_66.3_shear1_COMP.xlsx-author

		CONSOLID				OMPRESSION	N TEST 1a	l	
	Borina	DD17-3 Le		MMARY OF	TEST DA		ed By/Date	AKV 12	/10/2009
	Sample						c. By/Date		
	Depth (ft)	63.3				Checke	d By/Date	JFL 1/2	9/2010
SAMPLE C	CLASSIFIC	CATION:			SPECI	MEN DATA:		post-	- post-
Gray-browi	n, slightly c	layey SILT;	scattered org	ganics; ML		_	Initial	conso	ol shear
						eight, inches	5.725	5.703	
						neter, inches	2.5845	2.584	
			ration phase	1.00		Aspect Ratio	2.22	2.21	
			n Stress, psf	2506	VV	eight, grams	828.85	787.7	
			g shear, psf	6480		Water	46.5%	39.2%	
	Initia		sure(U ₀), psf	3963		Density, pcf	105.1	100.3	
		Shear	Rate, in/min	0.0035	Dry	Density, pcf	71.7	72.0	72.0
Axial	Deviator	Excess	Eff. Major	Eff. Minor	Eff. Princ	;			
Strain	Stress	Pore	Principal	Principal	Stress	Stress Pa	th Parame		F)
inch/inch	psf		Stress (psf)		Ratio	Р	P'	Q	
0.0016	861	429	2937	2076	1.41	2936	2507	430	
0.0033	1346	739	3113	1767	1.76	3179	2440	673	
0.0050	1618	918	3205	1587	2.02	3314	2396	809	
0.0066	1866	1028	3343	1478	2.26	3438	2410	933	
0.0083	2067	1108	3465	1398	2.48	3539	2431	1033	
0.0100	2205	1168	3543	1338	2.65	3608	2440	1103	
0.0116	2292	1228	3570	1278	2.79	3651	2424	1146	
0.0133	2417	1267	3655	1238	2.95	3714	2447	1209	
0.0150	2497	1297	3706	1208	3.07	3754	2457	1249	
0.0167	2588	1307	3787	1198	3.16	3800	2492	1294	
0.0183	2657	1317	3845	1188	3.24	3834	2516	1328	
0.0200	2725	1347	3883	1158	3.35	3868	2521	1362	
0.0217	2736	1347	3894	1158	3.36	3873	2526	1368	
0.0233	2792	1387	3911	1118	3.50	3902	2514	1396	
0.0250	2803	1387	3922	1118	3.51	3907	2520	1402	
0.0266	2859	1377	3987	1128	3.53	3935	2558	1430	
0.0283	2909	1397	4018	1108	3.63	3960	2563	1455	
0.0300	2926	1417	4014	1088	3.69	3969	2551	1463	
0.0316	2942	1397	4050	1108	3.65	3977	2579	1471	
0.0333	2992	1407	4090	1098	3.72	4001	2594	1496	
0.0350	3002	1417	4091	1088	3.76	4007	2590	1501	
0.0366	3024	1427	4102	1078	3.80	4018	2590	1512	
0.0383	2990	1437	4058	1068	3.80	4001	2563	1495	
0.0400	3039	1437	4108	1068	3.84	4025	2588	1520	
0.0417	3066	1447	4124	1058	3.90	4039	2591	1533	
0.0433	3087	1437	4156	1068	3.89	4049	2612	1544	
0.0450	3098	1447	4156	1058	3.93	4055	2607	1549	
0.0467	3086	1437	4155	1068	3.89	4049	2611	1543	
0.0483	3096	1447 1457	4155	1058	3.93	4054	2607	1548	
0.0500	3079	1457	4127	1048	3.94 Г	4045	2588	1539	1
						•	r Levees G git County,		nvestigation gton
					ł	(AL TES	т
							D17-3 Lev		
						R″}^Á2010		21	-1-21199-00
						SHANNON & Geotechnical and Er	& WILSON	I, INC.	FIG. C-36 (1/8

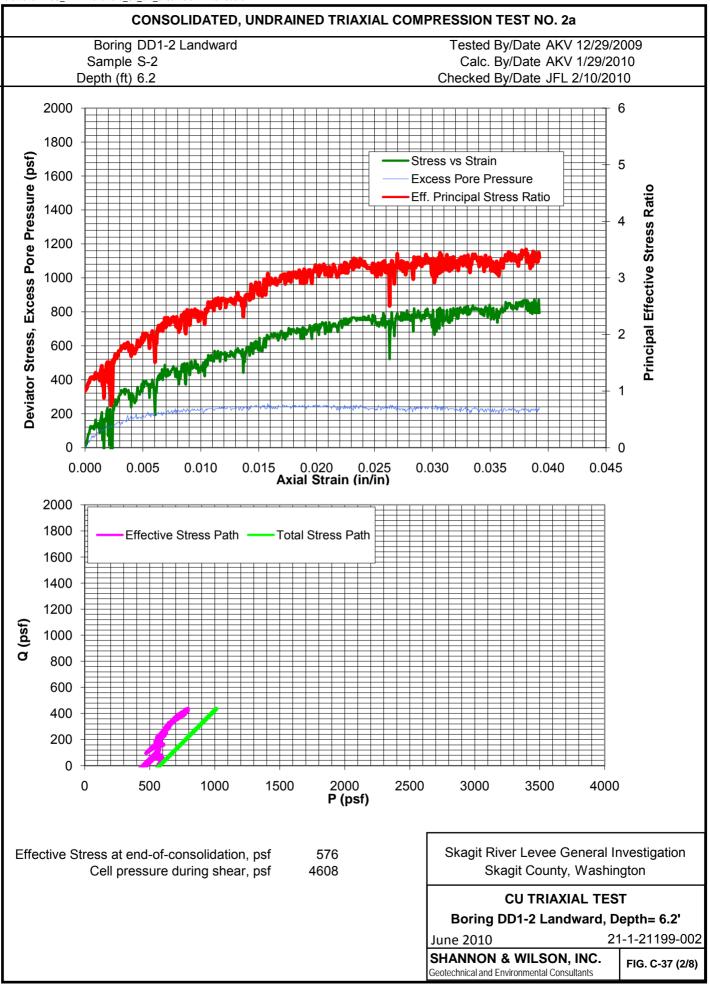

3/3/2010-TXCU_DD17-3Levee_S17_66.3_shear2_COMP.xlsx-author

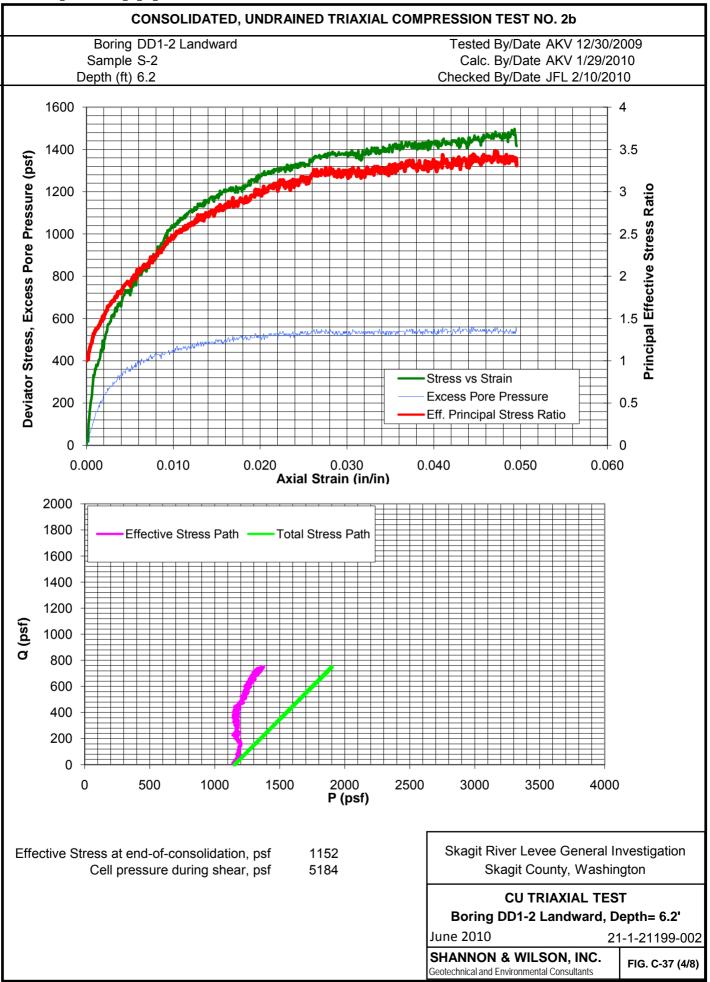

		CONSOLID					N IESI 10	I	
	Boring	DD17-3 Le		MMARY OF	IESIDA		ed By/Date	AKV 12	/11/2009
	Sample						c. By/Date		
	Depth (ft)	63.3				Checke	ed By/Date	JFL 1/2	9/2010
SAMPLE C	CLASSIFIC	CATION:			SPECIN	MEN DATA:		post-	- pos
Gray-brown	n, slightly o	layey SILT;	scattered org	ganics; ML			Initial	conso	
					He	eight, inches	5.415	5.462	
					Diam	eter, inches	2.652	2.652	2
	B-value at	end of satur	ation phase	1.00	A	Aspect Ratio	2.04	2.06	
	C	Consolidatior	n Stress, psf	4997	We	eight, grams	780.05	787.7	4 787.
	Cell pro	essure durin	g shear, psf	8971		Water	37.9%	39.2%	6 39.2
	Initia	l Pore Press	sure(U ₀), psf	4030	Wet	Density, pcf	99.3	99.4	99.
		Shear	Rate, in/min	0.0035	Dry	Density, pcf	72.0	71.4	71.
Axial	Deviator	Excoss	Eff Major	Eff. Minor	Eff. Princ				
Strain	Stress	Excess Pore	Eff. Major Principal	Principal	Stress		th Parame	tere (net	F)
nch/inch	psf		Stress (psf)	•	Ratio	P	P'	Q	1
0.0017	1199	679	5518	4318	1.28	5596	4918	600	
0.0035	2051	1317	5731	3679	1.20	6022	4918	1026	5
0.0053	2710	1727	5980	3270	1.83	6352	4625	1355	
0.0033	3089	1986	6100	3011	2.03	6541	4555	1545	
0.0078	3370	2186	6181	2811	2.00	6682	4496	1685	
0.0106	3601	2335	6262	2661	2.20	6797	4462	1800	
0.0124	3718	2355	6259	2542	2.35	6856	4401	1859	
0.0124	3974	2535	6436	2462	2.40	6984	4449	1987	
0.0159	4074	2635	6436	2362	2.72	7034	4399	2037	
0.0176	4205	2695	6507	2302	2.83	7100	4405	2103	
0.0170	4277	2035	6529	2302	2.90	7135	4391	2139	
0.0212	4349	2795	6551	2202	2.97	7171	4377	2174	
0.0229	4447	2844	6599	2152	3.07	7220	4376	2223	
0.0247	4550	2874	6672	2122	3.14	7272	4397	2275	
0.0265	4636	2914	6719	2083	3.23	7315	4401	2318	
0.0282	4680	2944	6733	2053	3.28	7337	4393	2340	
0.0300	4729	2974	6752	2023	3.34	7361	4387	2365	
0.0318	4741	3004	6733	1993	3.38	7367	4363	2370	
0.0336	4794	3024	6767	1973	3.43	7394	4370	2397	
0.0353	4806	3054	6749	1943	3.47	7400	4346	2403	
0.0371	4823	3044	6775	1953	3.47	7408	4364	2411	
0.0388	4818	3074	6741	1923	3.51	7406	4332	2409	
0.0406	4871	3094	6774	1903	3.56	7432	4338	2436	
0.0424	4856	3094	6759	1903	3.55	7425	4331	2428	
0.0441	4862	3124	6735	1873	3.60	7428	4304	2431	
0.0459	4878	3144	6731	1853	3.63	7436	4292	2439	
0.0477	4707	3144	6560	1853	3.54	7350	4206	2353	
0.0495	4900	3134	6762	1863	3.63	7447	4313	2450	
0.0512	4941	3144	6794	1853	3.67	7468	4324	2471	
0.0526	4866	3144	6719	1853	3.63	7430	4286	2433	
					ſ	Skagit Rive Skag	er Levee G git County,		-
					Г	(CU TRIAXI	AL TES	т
						Boring D	D17-3 Lev	vee, Dep	oth= 63.3'
					LE LE	R∛}^ÁG€F€		21	-1-21199-
						SHANNON & Geotechnical and Er	& WILSON	I, INC.	FIG. C-36



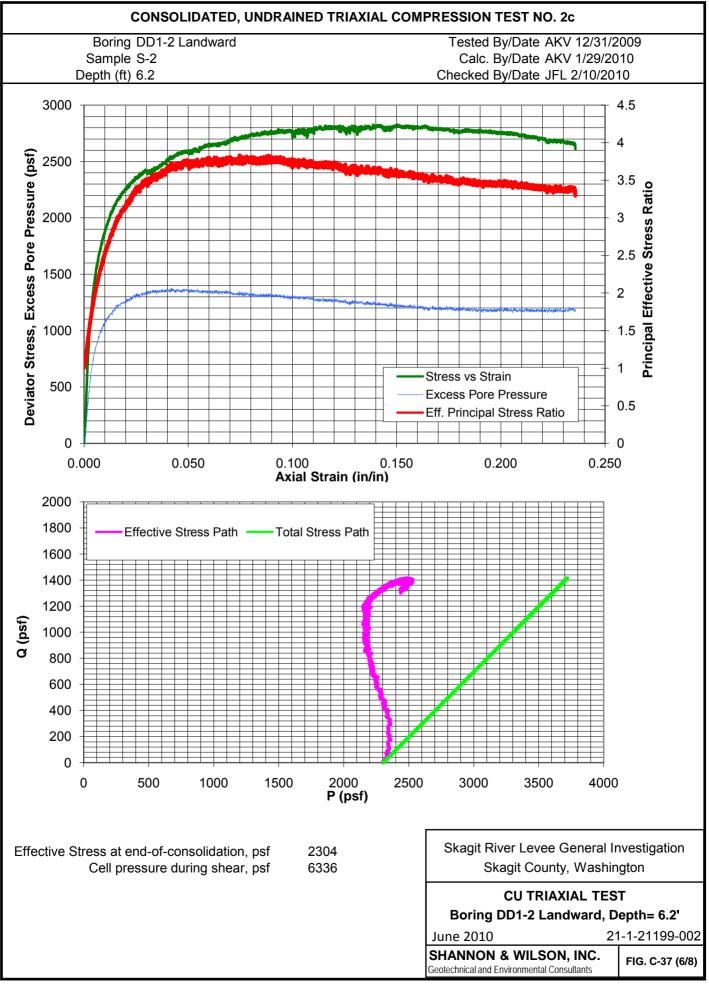
3/3/2010-TXCU_DD17-3Levee_S17_66.3_shear3_COMP.xlsx-author

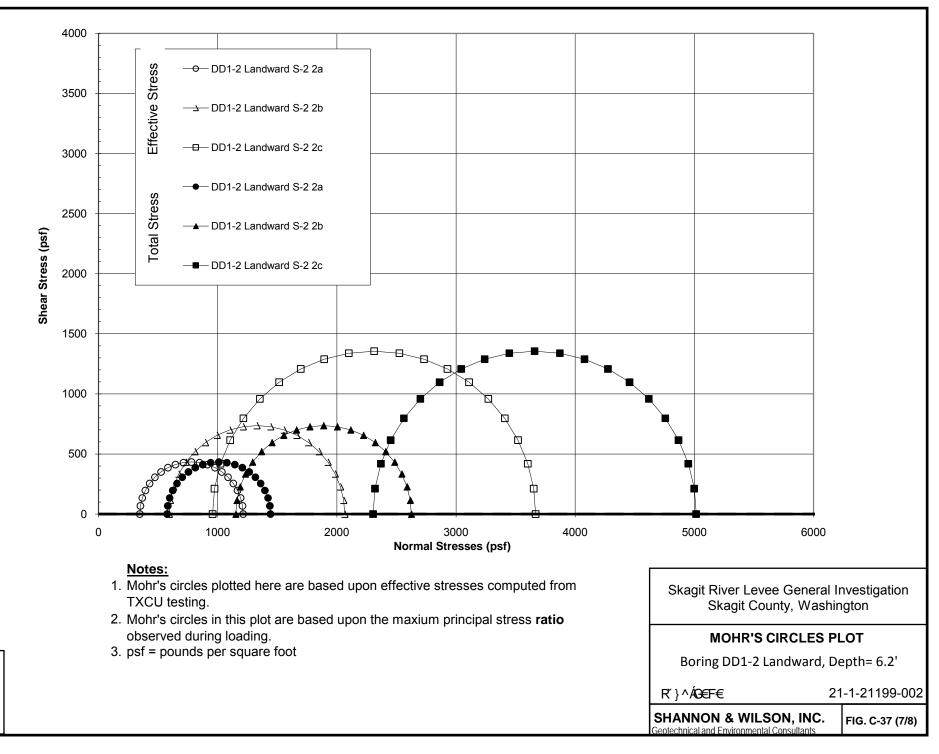
Gray-brown, slightly clayey SILT; scattered organics Initial Initial Initial Initial Consolidation B-value at end of saturation phase 1.00 Aspect Ratio 1.99 2.00 Consolidation Stress, psf 994 Weight, inches 2.7252 2.7252 2.7252 Cell pressure during shear, psf 13968 Water, inches 3.85 767.74 787.7 Axial Deviator Excess Eff. Major Eff. Minor Ff. Princ. Stress Stress Parameters (psf) Stress Pore Principal Principal Stress Stress Stress 3830 0.0201 7225 5320 11937 4674 2.25 13274 8523 3280 0.0201 7225 509 1207 4185 2.89 14026 8021 3447 0.0402 8062 5918 12137 4075 2.98 14026 8016 4031 0.0404 8065 5948 12178 3986 3.10		1	CONSOLID				OMPRESSIO	N TEST 1c	;	
Sample S-17 Depth (ft) 63.3 Calc. By/Date JFL 1/29/2010 SAMPLE CLASSIFICATION: Gray-brown, slightly clayey SILT; scattered organics SPECIMEN DATA: Height, inches Initial consol shee B-value at end of saturation phase 1.00 Consolidation Stress, psf 9904 Weight, grams 738.85 787.74 787.7 77.7 77.7 77.7 77.7 77.7 77.7 77.7 77.7 77.7 77.7 77.7 77.7		Boring	DD17-31e		MMARY OF	TEST DA		ed Bv/Date	AKV 12/	11/2009
Depth (ft) 63.3 Checked By/Date JFL 1/29/2010 SAMPLE CLASSIFICATION: Gray-brown, slightly clayey SILT; scattered organics SPECIMEN DAT: Initial consolidation phase post- Diameter, inches Diameter, inches <td></td> <td>-</td> <td></td> <td>100</td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td>		-		100				•		
Gray-brown, slightly clayey SILT; scattered organics Initial consol scattered initial consol scattered		•						•		
Height, Inches 5.415 5.455 4.36 Diameter, Inches 2.7262 2.7252 2.7252 Cell pressure during shear, psf 13968 Water 30.6% 39.2% Initial Pore Pressure(U ₀), psf 4487 WetDensity, pcf 89.1 94.3 94.3 Shear Rate, in/min 0.0035 Dry Density, pcf 68.2 67.7 67.7 Axial Deviator Excess Eff. Minor Eff. Princ Stress Path Parameters (psf) Strain Stress Pore Principal Principal Stress 2469 0.0026 0.0134 6560 47.51 11803 524.3 2.25 13274 8523 3280 0.0268 7693 5.619 12068 4375 2.76 13840 8221 3847 0.0368 625 5989 12167 4185 2.89 13955 8146 3961 0.0402 8062 5918 12137 4674 2.55 33631 <th>SAMPLE (</th> <th>CLASSIFIC</th> <th>ATION:</th> <th></th> <th></th> <th>SPECI</th> <th>MEN DATA:</th> <th></th> <th>post-</th> <th>post-</th>	SAMPLE (CLASSIFIC	ATION:			SPECI	MEN DATA:		post-	post-
Height, Inches 5.415 5.455 4.36 Diameter, Inches 2.7262 2.7252 2.7252 Cell pressure during shear, psf 13968 Water 30.6% 39.2% Initial Pore Pressure(U ₀), psf 4487 WetDensity, pcf 89.1 94.3 94.3 Shear Rate, in/min 0.0035 Dry Density, pcf 68.2 67.7 67.7 Axial Deviator Excess Eff. Minor Eff. Princ Stress Path Parameters (psf) Strain Stress Pore Principal Principal Stress 2469 0.0026 0.0134 6560 47.51 11803 524.3 2.25 13274 8523 3280 0.0268 7693 5.619 12068 4375 2.76 13840 8221 3847 0.0368 625 5989 12167 4185 2.89 13955 8146 3961 0.0402 8062 5918 12137 4674 2.55 33631 <td>Gray-brow</td> <td>n, slightly c</td> <td>layey SILT;</td> <td>scattered or</td> <td>ganics</td> <td></td> <td></td> <td>Initial</td> <td>•</td> <td>•</td>	Gray-brow	n, slightly c	layey SILT;	scattered or	ganics			Initial	•	•
B-value at end of saturation phase 1.00 Aspect Ratio 1.99 2.00 Cell pressure during shear, psf 13968 Water 30.6% 39.2% 39.2 Initial Pore Pressure(U ₀), psf 4487 Wet Density, pcf 89.1 94.3 94.3 Shear Rate, in/min 0.0035 Dry Density, pcf 68.2 67.7 67.7 Axial Deviator Excess Eff. Minor Eff. Princ Stress Parameters (psf) Strain Stress Pore Principal Prices, psf) 3631 94.469 0.0134 6560 47.51 11803 5243 2.25 13825 8305 3631 0.0268 7693 5619 12068 4375 2.76 13840 821 3847 0.0402 8062 5918 12137 4075 2.98 14025 8106 4031 0.0403 8283 6098 12163 3995 3.04 14076 8079 4122 0.0404 <	,		, , , , , , , , , , , , , , , , , , ,	·		H	eight, inches	5.415		
Consolidation Stress, pef 9994 Weight, grams 738.85 787.74 787.73 787.74 787.73 787.74<							-	2.7252	2.7252	2
Cell pressure during shear, psf 13968 Water 30.6% 39.2% 39.2% Initial Pore Pressure(U ₀), psf 4487 Wet Density, pcf 68.2 67.7 67.7 Axial Deviator Eff. Major Eff. Minor Eff. Princ Stress (psf) P Q 0.0067 4937 3413 11618 6580 1.76 12462 9049 2469 0.0134 6660 4751 11803 5243 2.25 13274 8523 3280 0.0268 7693 5619 12068 4375 2.76 13840 8221 3847 0.0358 7822 5809 12107 4185 2.89 13955 8146 3961 0.0402 8062 5918 12182 3936 3.10 14117 8059 4132 0.0402 8068 1218 <		B-value at	end of satur	ation phase	1.00	/	Aspect Ratio	1.99	2.00	
Initial Pore Pressure(U ₀), ps 4487 Wet Density, pcf 89.1 94.3 94.3 Axial Deviator Excess Eff. Major Principal Dry Density, pcf 68.2 67.7 67.7 Axial Deviator Excess Eff. Major Principal Stress Stress Parameters (psf) 0.0007 4937 3413 11518 6580 1.75 12462 9049 2469 0.0134 6560 4751 11803 5243 2.25 13274 8523 3280 0.0201 7263 5519 12068 4375 2.76 13840 8221 3841 0.0402 8062 5918 12137 4075 2.98 14025 8106 4031 0.0403 8247 6068 12178 3896 3.13 14137 8037 4141 0.0603 8283 6098 12173 3846 3.16 14137 7962 4146 0.0603 8283 <td></td> <td>C</td> <td>consolidatior</td> <td>n Stress, psf</td> <td>9994</td> <td>W</td> <td>eight, grams</td> <td>738.85</td> <td>787.74</td> <td>4 787.74</td>		C	consolidatior	n Stress, psf	9994	W	eight, grams	738.85	787.74	4 787.74
Shear Rate, in/min 0.0035 Dry Density, pcf 68.2 67.7 67.7 Axial Strain Deviator Stress Excess Proc Eff. Major Principal Eff. Princ Stress Stress Stress Stress Stress Stress Stress Stress P Q Q 0.0067 4937 3413 11518 6560 1.75 12462 9049 2469 0.0121 7263 5320 11937 4674 2.55 13825 8305 3631 0.0201 7263 5320 12107 4185 2.89 13955 8146 3961 0.0402 8062 5918 12160 3995 3.04 14076 8078 4083 0.0536 8247 6058 12182 3936 3.13 14117 7984 4123 0.0670 8244 6118 1219 3876 3.13 14143 7976 4150 0.0804 8299 6168 12182 3826 <		Cell pre	essure durin	g shear, psf	13968		Water	30.6%	39.2%	39.2%
Axial Strain inch/inch Excess Pres. (psf) Eff. Major Principal Eff. Minor Principal Eff. Princ Stress Stress Ratio Stress Stres<		Initia	I Pore Press	sure(U ₀), psf	4487	Wet	Density, pcf	89.1	94.3	94.3
Strain inch/inch Stress pres. (pf) Principal Pres. (pf) Principal Stress (pf) Stress Ratio Stress P Parameters (pf) P Q 0.0067 4937 3413 11518 6560 1.75 12462 9049 2469 0.0134 6560 4751 11803 5243 2.25 13274 8523 3280 0.0268 7693 5619 12068 4375 2.76 13840 8221 3847 0.0353 7922 5809 12107 4185 2.89 13955 8146 3961 0.0402 8062 5918 12137 4075 2.88 14025 8106 4031 0.0469 8125 5986 12182 3936 3.10 14117 8059 4123 0.0603 8247 6058 12182 3846 3.16 14133 7976 4146 0.0737 8292 6148 12137 3846 3.16 14133 7992 4146			Shear	Rate, in/min	0.0035	Dry	Density, pcf	68.2	67.7	67.7
Strain Inch/inch Stress psf Proc. (psf) Principal Principal Stress (psf) Ratio P P Q <thq< th=""> Q<</thq<>	Axial	Deviator	Excess	Eff. Major	Eff. Minor	Eff. Princ	2			
inch/inch psf Pres. (psf) Stress (psf) Ratio P P' Q 0.0067 4937 3413 11518 6680 1.75 12462 9049 2469 0.0134 6560 4751 11803 5243 2.25 13274 8523 3280 0.0201 7263 5320 11937 4674 2.55 13625 8305 3631 0.0268 7693 5619 12068 4375 2.76 13840 8221 3847 0.0335 7922 5809 12107 4185 2.89 13955 8146 3961 0.0402 8062 5918 12137 4075 2.98 14025 8106 4031 0.0469 8165 5998 12182 3936 3.10 14117 8069 4123 0.0603 8283 6098 12178 3896 3.13 14143 7976 4150 0.0737 8292 6168 <								th Parame	eters (psf))
0.0067 4937 3413 11518 6580 1.75 12462 9049 2469 0.0134 6560 4751 11803 5243 2.25 13274 8523 3280 0.0206 7693 5619 12068 4375 2.76 13840 8221 3847 0.0335 7922 5809 12107 4185 2.88 14025 8106 4031 0.0402 8062 5918 12137 4075 2.98 14025 8106 4083 0.0536 8247 6058 12182 3936 3.10 14117 8059 4123 0.0670 8244 6118 12137 3846 3.13 14135 8037 14141 0.0673 8249 6168 12125 3826 3.17 14143 7964 4150 0.0737 8292 6178 12095 3816 3.17 14143 7964 4150 0.0871 8279		psf	Pres. (psf)	•	•				,	
0.0201 7263 5320 11937 4674 2.55 13625 8305 3631 0.0268 7693 5619 12068 4375 2.76 13840 8221 3847 0.0335 7922 5809 12107 4185 2.89 13955 8146 3961 0.0402 8062 5918 12137 4075 2.98 14025 8106 4031 0.0469 8165 5998 12160 3995 3.04 14076 8078 4083 0.0603 8283 6098 12178 3896 3.13 14117 8059 4123 0.0670 8244 6118 12137 3846 3.16 14137 7976 4150 0.0804 8299 6168 12295 3816 3.17 14143 7976 4150 0.0807 8205 6168 12031 3826 3.12 14050 7882 4056 0.1002 8113							12462	9049	2469	
0.0268 7693 5619 12068 4375 2.76 13840 8221 3847 0.0335 7922 5809 12107 4185 2.89 13955 8146 3961 0.0402 8062 5918 12137 4075 2.98 14025 8106 4031 0.0469 8165 5998 12160 3995 3.04 14076 8078 4083 0.0536 8247 6058 12182 3936 3.10 14117 8059 4123 0.0670 8244 6118 1219 3876 3.13 14135 8037 4141 0.0671 8292 6148 12137 3846 3.16 14139 7992 4146 0.0871 8279 6178 12095 3816 3.17 14133 7955 4139 0.0938 8205 6168 12313 3826 3.12 14050 7882 4056 0.1005 8113	0.0134	6560	4751	11803	5243	2.25	13274	8523	3280	
0.0335 7922 5809 12107 4185 2.89 13955 8146 3961 0.0402 8062 5918 12137 4075 2.98 14025 8106 4031 0.0469 8165 5998 12160 3995 3.04 14076 8078 4083 0.0603 8283 6098 12178 3896 3.13 14117 8059 4123 0.0670 8244 6118 12179 3876 3.13 14117 798 4122 0.0737 8292 6168 12125 3826 3.17 14143 7976 4150 0.0804 8299 6168 12031 3826 3.14 14096 7928 4103 0.1005 8113 6168 11939 3826 3.12 14050 7882 4056 0.1072 8003 6158 11839 3846 3.01 13862 7714 3869 0.11206 7212	0.0201		5320	11937	4674		13625	8305	3631	
0.0402 8062 5918 12137 4075 2.98 14025 8106 4031 0.0469 8165 5998 12160 3995 3.04 14076 8078 4083 0.0536 8247 6058 12182 3936 3.10 14117 8059 4123 0.0603 8283 6098 12178 3896 3.13 14135 8037 4141 0.0607 8244 6118 12117 3846 3.16 14137 7976 4150 0.0737 8292 6148 12125 3826 3.17 14133 7975 4139 0.0804 8299 6168 12031 3826 3.12 14050 7882 4056 0.1005 8113 6168 11939 3836 3.09 13995 7837 4001 0.1139 7737 6148 11583 3846 3.01 13862 7714 3869 0.1206 7212										
0.0469 8165 5998 12160 3995 3.04 14076 8078 4083 0.0536 8247 6058 12182 3936 3.10 14117 8059 4123 0.0603 8283 6098 12178 3896 3.13 14135 8037 4141 0.0670 8244 6118 12137 3846 3.16 14139 7992 4146 0.0804 8299 6168 12125 3826 3.17 14133 7955 4139 0.0938 8205 6168 12031 3826 3.12 14050 7882 4056 0.1005 8113 6168 11939 3826 3.01 13862 7114 3869 0.10172 8003 6158 11839 3836 3.09 13995 7837 4001 0.1206 7212 6198 11008 3796 2.90 13600 7402 3606 0.1474 6158	0.0335		5809	12107	4185	2.89	13955	8146	3961	
0.0536 8247 6058 12182 3936 3.10 14117 8059 4123 0.0603 8283 6098 12178 3896 3.13 14135 8037 4141 0.0670 8244 6118 12119 3876 3.13 14135 8037 4141 0.0670 8244 6118 12137 3846 3.16 14139 7992 4146 0.0737 8292 6168 12125 3826 3.17 14143 7976 4150 0.0804 8299 6168 12031 3826 3.12 14096 7928 4103 0.1005 8113 6168 11939 3826 3.12 14050 7882 4056 0.1072 8003 6158 11839 3836 3.09 13995 7837 4001 0.1123 6712 6198 11008 3796 2.90 13600 7402 3606 0.1273 6905	0.0402			12137			14025			
0.0603 8283 6098 12178 3896 3.13 14135 8037 4141 0.0670 8244 6118 12119 3876 3.13 14116 7998 4122 0.0737 8292 6148 12137 3846 3.16 14139 7992 4146 0.0804 8299 6168 12125 3826 3.17 14143 7976 4150 0.0871 8279 6178 12095 3816 3.17 14143 7975 4139 0.0938 8205 6168 12031 3826 3.12 14050 7882 4056 0.1005 8113 6188 11839 3836 3.09 13995 7837 4001 0.11206 7212 6198 11008 3796 2.90 13600 7402 3606 0.1206 7212 6198 10057 3646 2.81 13299 6951 3305 0.1407 6352				12160			14076			
0.0670 8244 6118 12119 3876 3.13 14116 7998 4122 0.0737 8292 6148 12137 3846 3.16 14139 7992 4146 0.0804 8299 6168 12125 3826 3.17 14143 7976 4150 0.0871 8279 6178 12095 3816 3.17 14143 7955 4139 0.0938 8205 6168 12031 3826 3.14 14096 7928 4103 0.1005 8113 6168 11939 3826 3.12 14050 7882 4056 0.1072 8003 6158 11839 3836 3.09 13995 7837 4001 0.1126 7212 6198 11008 3796 2.90 13600 7402 3606 0.1273 6905 6268 10631 3726 2.85 13446 7178 3452 0.1340 6611	0.0536	8247	6058	12182	3936	3.10	14117	8059	4123	
0.0737 8292 6148 12137 3846 3.16 14139 7992 4146 0.0804 8299 6168 12125 3826 3.17 14143 7976 4150 0.0871 8279 6178 12095 3816 3.17 14143 7976 4139 0.0938 8205 6168 12031 3826 3.12 14050 7882 4056 0.1005 8113 6168 11939 3826 3.12 14050 7882 4056 0.1072 8003 6158 11839 3836 3.09 13995 7837 4001 0.1139 7737 6148 11583 3846 3.01 13862 7714 3869 0.1206 7212 6198 11008 3776 2.85 13446 7178 3452 0.1340 6611 6348 10257 3646 2.81 13299 6951 3305 0.1407 6352				12178			14135			
0.0804 8299 6168 12125 3826 3.17 14143 7976 4150 0.0871 8279 6178 12095 3816 3.17 14133 7955 4139 0.0938 8205 6168 12031 3826 3.14 14096 7928 4103 0.1005 8113 6168 11939 3826 3.12 14050 7882 4056 0.1072 8003 6158 11839 3836 3.09 13995 7837 4001 0.1139 7737 6148 11583 3846 3.01 13862 7714 3869 0.1206 7212 6198 11008 3796 2.90 13600 7402 3606 0.1206 7212 6198 10257 3646 2.81 13299 6951 3305 0.1407 6352 6397 9948 3596 2.71 13170 6772 3176 0.1474 6158				12119	3876		14116			
0.0871 8279 6178 12095 3816 3.17 14133 7955 4139 0.0938 8205 6168 12031 3826 3.14 14096 7928 4103 0.1005 8113 6168 11939 3826 3.12 14050 7882 4056 0.1072 8003 6158 11839 3836 3.09 13995 7837 4001 0.1139 7737 6148 11583 3846 3.01 13862 7714 3869 0.1206 7212 6198 11008 3796 2.90 13600 7402 3606 0.1340 6611 6348 10257 3646 2.81 13299 6951 3305 0.1407 6352 6397 9483 3596 2.77 13170 6772 3176 0.1474 6158 6447 9704 3546 2.74 13072 6625 3079 0.1540 5970										
0.0938 8205 6168 12031 3826 3.14 14096 7928 4103 0.1005 8113 6168 11939 3826 3.12 14050 7882 4056 0.1072 8003 6158 11839 3836 3.09 13995 7837 4001 0.1139 7737 6148 11583 3846 3.01 13862 7714 3869 0.1206 7212 6198 11008 3796 2.90 13600 7402 3606 0.1273 6905 6268 10631 3726 2.85 13446 7178 3452 0.1340 6611 6348 10257 3646 2.81 13299 6951 3305 0.1407 6352 6397 9948 3596 2.77 13170 6772 3176 0.1407 6352 6527 9281 3467 2.68 12901 6374 2907 0.1608 5815										
0.1005 8113 6168 11939 3826 3.12 14050 7882 4056 0.1072 8003 6158 11839 3836 3.09 13995 7837 4001 0.1139 7737 6148 11583 3846 3.01 13862 7714 3869 0.1206 7212 6198 11008 3796 2.90 13600 7402 3606 0.1273 6905 6268 10631 3726 2.85 13446 7178 3452 0.1340 6611 6348 10257 3646 2.81 13299 6951 3305 0.1407 6352 6397 9948 3596 2.77 13170 6772 3176 0.1474 6158 6447 9704 3546 2.74 13072 6625 3079 0.1540 5970 6497 9467 3496 2.71 12979 6482 2985 0.1608 5815 6527 9281 3467 2.68 12901 6374 2907 0.1675 5713 6567 9140 3427 2.67 12850 6283 2857 0.1742 5583 6577 8999 3417 2.63 12785 6208 2791 0.1809 5509 6617 8885 3377 2.63 12748 6131 2754 0.1876 5418 6637 8775 3357 2.61 12703 6066 2709 0.1943 5333 6647 8679 3347 2.59 12660 6013 26666 0.2006 5205 6657 8542 3337 2.56 12596 5939 2603 Skagit River Levee General Investigation Skagit River Levee General Investigation Skagit County, Washington										
0.1072 8003 6158 11839 3836 3.09 13995 7837 4001 0.1139 7737 6148 11583 3846 3.01 13862 7714 3869 0.1206 7212 6198 11008 3796 2.90 13600 7402 3606 0.1273 6905 6268 10631 3726 2.85 13446 7178 3452 0.1340 6611 6348 10257 3646 2.81 13299 6951 3305 0.1407 6352 6397 9948 3596 2.77 13170 6772 3176 0.1474 6158 6447 9704 3546 2.74 13072 6625 3079 0.1540 5970 6497 9467 3496 2.71 12979 6482 2985 0.1608 5815 6527 9281 3467 2.68 12901 6374 2907 0.1675 5713 6567 9140 3427 2.67 12850 6283 2857 0.1742 5583 6577 8999 3417 2.63 12785 6208 2791 0.1809 5509 6617 8885 3377 2.63 12748 6131 2754 0.1876 5418 6637 8775 3357 2.61 12703 6066 2709 0.1943 5333 6647 8679 3347 2.59 12660 6013 2666 0.2006 5205 6657 8542 3337 2.56 12596 5939 2603 Skagit County, Washington CU TRIAXIAL TEST Boring DD17-3 Levee, Depth= 63.3' June 2010 21-1-21199-0										
0.1139 7737 6148 11583 3846 3.01 13862 7714 3869 0.1206 7212 6198 11008 3796 2.90 13600 7402 3606 0.1273 6905 6268 10631 3726 2.85 13446 7178 3452 0.1340 6611 6348 10257 3646 2.81 13299 6951 3305 0.1407 6352 6397 9948 3596 2.77 13170 6772 3176 0.1407 6352 6397 9948 3596 2.71 13072 6625 3079 0.1474 6158 6447 9704 3546 2.74 13072 6625 3079 0.1608 5815 6527 9281 3467 2.68 12901 6374 2907 0.1675 5713 6567 9140 3427 2.67 12850 6283 2857 0.1742 5583 6577 8999 3417 2.63 12785 6208 2791										
0.1206 7212 6198 11008 3796 2.90 13600 7402 3606 0.1273 6905 6268 10631 3726 2.85 13446 7178 3452 0.1340 6611 6348 10257 3646 2.81 13299 6951 3305 0.1407 6352 6397 9948 3596 2.77 13170 6772 3176 0.1474 6158 6447 9704 3546 2.74 13072 6625 3079 0.1540 5970 6497 9467 3496 2.71 12979 6482 2985 0.1608 5815 6527 9281 3467 2.68 12901 6374 2907 0.1675 5713 6567 9140 3427 2.67 12850 6283 2857 0.1742 5583 6577 8999 3417 2.63 12785 6208 2791 0.1809 5509 6617 8885 3377 2.63 12748 6131 2754 0.1876 5418 6637 8775 3357 2.61 12703 6066 2709 0.1943 5333 6647 8679 3347 2.59 12660 6013 2666 0.2006 5205 6657 8542 3337 2.56 12596 5939 2603 Skagit River Levee General Investigation Skagit County, Washington										
0.1273 6905 6268 10631 3726 2.85 13446 7178 3452 0.1340 6611 6348 10257 3646 2.81 13299 6951 3305 0.1407 6352 6397 9948 3596 2.77 13170 6772 3176 0.1474 6158 6447 9704 3546 2.74 13072 6625 3079 0.1540 5970 6497 9467 3496 2.71 12979 6482 2985 0.1608 5815 6527 9281 3467 2.68 12901 6374 2907 0.1675 5713 6567 9140 3427 2.67 12850 6283 2857 0.1742 5583 6577 8999 3417 2.63 12785 6208 2791 0.1809 5509 6617 8885 3377 2.63 12748 6131 2754 0.1876 5418 6637 8775 3357 2.61 12703 6066 2709 0.1943 5333 6647 8679 3347 2.59 12660 6013 2666 0.2006 5205 6657 8542 3337 2.56 12596 5939 2603 Skagit River Levee General Investigation Skagit County, Washington CU TRIAXIAL TEST Boring DD17-3 Levee, Depth= 63.3' June 2010 21-1-21199-0										
0.1340 6611 6348 10257 3646 2.81 13299 6951 3305 0.1407 6352 6397 9948 3596 2.77 13170 6772 3176 0.1474 6158 6447 9704 3546 2.74 13072 6625 3079 0.1540 5970 6497 9467 3496 2.71 12979 6482 2985 0.1608 5815 6527 9281 3467 2.68 12901 6374 2907 0.1675 5713 6567 9140 3427 2.67 12850 6283 2857 0.1742 5583 6577 8999 3417 2.63 12785 6208 2791 0.1809 5509 6617 8885 3377 2.63 12748 6131 2754 0.1876 5418 6637 8775 3357 2.61 12703 6066 2709 0.1943 5333 6647 8679 3347 2.59 12660 6013 2666 0.2006 5205 6657 8542 3337 2.56 12596 5939 2603 Skagit River Levee General Investigation Skagit County, Washington CU TRIAXIAL TEST Boring DD17-3 Levee, Depth= 63.3' June 2010 21-121199-0										
0.1407 6352 6397 9948 3596 2.77 13170 6772 3176 0.1474 6158 6447 9704 3546 2.74 13072 6625 3079 0.1540 5970 6497 9467 3496 2.71 12979 6482 2985 0.1608 5815 6527 9281 3467 2.68 12901 6374 2907 0.1675 5713 6567 9140 3427 2.67 12850 6283 2857 0.1742 5583 6577 8999 3417 2.63 12785 6208 2791 0.1809 5509 6617 8885 3377 2.63 12748 6131 2754 0.1876 5418 6637 8775 3357 2.61 12703 6066 2709 0.1943 5333 6647 8679 3347 2.59 12660 6013 2666 0.2006 5205 6657 8542 3337 2.56 12596 5939 2603 Skagit County, Washington CU TRIAXIAL TEST Boring DD17-3 Levee, Depth= 63.3' June 2010 21-1-21199-0										
0.1474 6158 6447 9704 3546 2.74 13072 6625 3079 0.1540 5970 6497 9467 3496 2.71 12979 6482 2985 0.1608 5815 6527 9281 3467 2.68 12901 6374 2907 0.1675 5713 6567 9140 3427 2.67 12850 6283 2857 0.1742 5583 6577 8999 3417 2.63 12785 6208 2791 0.1809 5509 6617 8885 3377 2.63 12748 6131 2754 0.1876 5418 6637 8775 3357 2.61 12703 6066 2709 0.1943 5333 6647 8679 3347 2.59 12660 6013 2666 0.2006 5205 6657 8542 3337 2.56 12596 5939 2603 Skagit River Levee General Investigation Skagit County, Washington CU TRIAXIAL TEST Boring DD17-3 Levee, Depth= 63.3' June 2010 21-1-21199-0										
0.1540 5970 6497 9467 3496 2.71 12979 6482 2985 0.1608 5815 6527 9281 3467 2.68 12901 6374 2907 0.1675 5713 6567 9140 3427 2.67 12850 6283 2857 0.1742 5583 6577 8999 3417 2.63 12785 6208 2791 0.1809 5509 6617 8885 3377 2.63 12748 6131 2754 0.1876 5418 6637 8775 3357 2.61 12703 6066 2709 0.1943 5333 6647 8679 3347 2.59 12660 6013 2666 0.2006 5205 6657 8542 3337 2.56 12596 5939 2603 Skagit River Levee General Investigation Skagit County, Washington CU TRIAXIAL TEST Boring DD17-3 Levee, Depth= 63.3' June 2010 21-1-21199-0										
0.1608 5815 6527 9281 3467 2.68 12901 6374 2907 0.1675 5713 6567 9140 3427 2.67 12850 6283 2857 0.1742 5583 6577 8999 3417 2.63 12785 6208 2791 0.1809 5509 6617 8885 3377 2.63 12748 6131 2754 0.1876 5418 6637 8775 3357 2.61 12703 6066 2709 0.1943 5333 6647 8679 3347 2.59 12660 6013 2666 0.2006 5205 6657 8542 3337 2.56 12596 5939 2603 Skagit River Levee General Investigation Skagit County, Washington CU TRIAXIAL TEST Boring DD17-3 Levee, Depth= 63.3' June 2010 21-1-21199-0										
0.1675 5713 6567 9140 3427 2.67 12850 6283 2857 0.1742 5583 6577 8999 3417 2.63 12785 6208 2791 0.1809 5509 6617 8885 3377 2.63 12748 6131 2754 0.1876 5418 6637 8775 3357 2.61 12703 6066 2709 0.1943 5333 6647 8679 3347 2.59 12660 6013 2666 0.2006 5205 6657 8542 3337 2.56 12596 5939 2603 Skagit River Levee General Investigation Skagit County, Washington CU TRIAXIAL TEST Boring DD17-3 Levee, Depth= 63.3' June 2010 21-1-21199-0										
0.1742 5583 6577 8999 3417 2.63 12785 6208 2791 0.1809 5509 6617 8885 3377 2.63 12748 6131 2754 0.1876 5418 6637 8775 3357 2.61 12703 6066 2709 0.1943 5333 6647 8679 3347 2.59 12660 6013 2666 0.2006 5205 6657 8542 3337 2.56 12596 5939 2603 Skagit River Levee General Investigation Skagit County, Washington CU TRIAXIAL TEST Boring DD17-3 Levee, Depth= 63.3' June 2010 21-1-21199-0										
0.1809 5509 6617 8885 3377 2.63 12748 6131 2754 0.1876 5418 6637 8775 3357 2.61 12703 6066 2709 0.1943 5333 6647 8679 3347 2.59 12660 6013 2666 0.2006 5205 6657 8542 3337 2.56 12596 5939 2603 Skagit River Levee General Investigation Skagit County, Washington CU TRIAXIAL TEST Boring DD17-3 Levee, Depth= 63.3' June 2010 21-1-21199-0										
0.1876 5418 6637 8775 3357 2.61 12703 6066 2709 0.1943 5333 6647 8679 3347 2.59 12660 6013 2666 0.2006 5205 6657 8542 3337 2.56 12596 5939 2603 Skagit River Levee General Investigation Skagit County, Washington CU TRIAXIAL TEST Boring DD17-3 Levee, Depth= 63.3' June 2010 21-1-21199-0										
0.1943 5333 6647 8679 3347 2.59 12660 6013 2666 0.2006 5205 6657 8542 3337 2.56 12596 5939 2603 Skagit River Levee General Investigation Skagit County, Washington CU TRIAXIAL TEST Boring DD17-3 Levee, Depth= 63.3' June 2010 21-1-21199-0										
0.2006 5205 6657 8542 3337 2.56 12596 5939 2603 Skagit River Levee General Investigation Skagit County, Washington CU TRIAXIAL TEST Boring DD17-3 Levee, Depth= 63.3' June 2010 21-1-21199-0										
Skagit River Levee General Investigation Skagit County, Washington CU TRIAXIAL TEST Boring DD17-3 Levee, Depth= 63.3' June 2010 21-1-21199-0										
Skagit County, Washington CU TRIAXIAL TEST Boring DD17-3 Levee, Depth= 63.3' June 2010 21-1-21199-0	0.2006	5205	1000	0042	333 <i>1</i>	2.⊃0]				
CU TRIAXIAL TEST Boring DD17-3 Levee, Depth= 63.3' June 2010 21-1-21199-0							Skagit Rive	er Levee G	eneral In	vestigation
Boring DD17-3 Levee, Depth= 63.3' June 2010 21-1-21199-0										
June 2010 21-1-21199-0										
							-	ריטי Le\	•	
								R WILSON		FIG. C-36 (5/

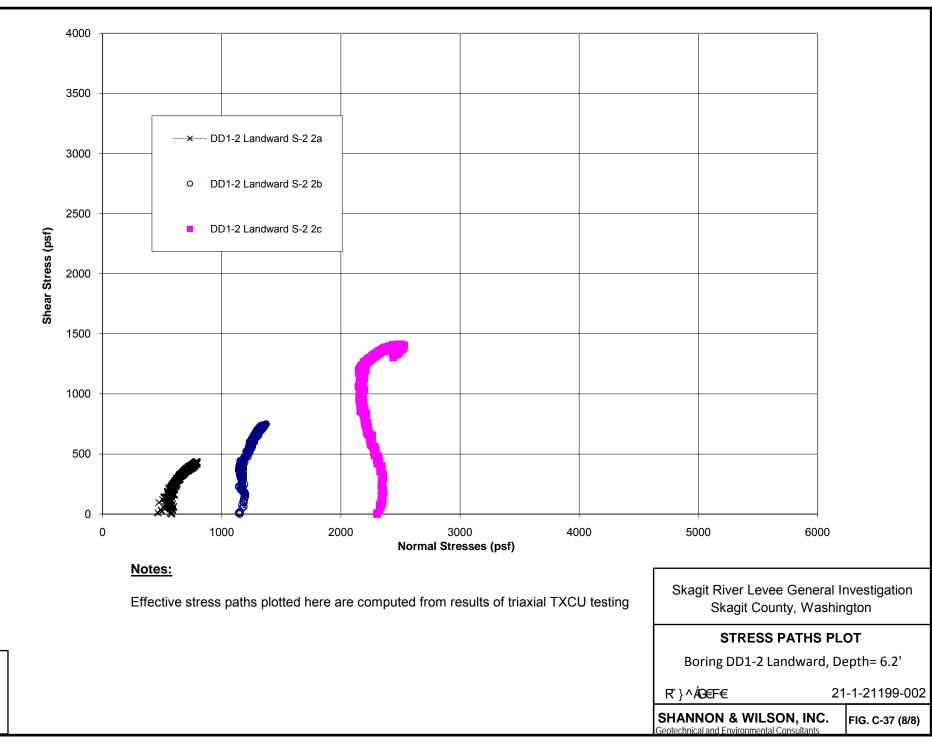



3/3/2010-TXCU_DD1-2Landward_S2_6.2_shear1COMP.xlsx-author

		CONSOLID	ATED, UND	RAINED TRI	AXIAL CO	OMPRESSIO	N TEST 2a	l	
	Boring	JDD1-2 Lan		MMARY OF	TEST DA		ed By/Date	<u> </u>	/20/2000
	Sample		uwaru				c. By/Date		
	Depth (ft)						ed By/Date		
SAMPLE	CLASSIFIC	CATION:			SPECI	MEN DATA:		post-	post-
		SILT; trace o	rganics; ML				Initial	conso	•
						eight, inches	4.891	4.851	
	D volue of	and of actur	ation phase	1 00		neter, inches	2.4652	2.465	
		end of satur Consolidatior	•	1.00 576		Aspect Ratio eight, grams	1.98 652.89	1.97 632.4	
		essure durin		4608	••	Water	45.7%	41.19	
	•	I Pore Press	• ·	4037	Wet	Density, pcf	106.5	104.0	
			Rate, in/min	0.0035		Density, pcf	73.1	73.7	
Axial	Deviator	Excose	Eff Major	Eff. Minor	Eff. Princ	2			
Strain	Stress	Excess Pore	Eff. Major Principal	Principal	Stress		th Parame	eters (nsf	.)
inch/inch									/
0.0013	88	100	564	476	1.18	620	520	44	
0.0025	251	130	697	446	1.56	701	572	125	
0.0039	281	170	688	406	1.69	717	547	141	
0.0051 0.0065	375 436	180 200	771 813	396 376	1.95 2.16	763 794	584 595	187 218	
0.0003	430 466	200	833	366	2.10	794 809	600	233	
0.0091	427	210	794	366	2.17	790	580	200	
0.0103	420	220	776	356	2.18	786	566	210	
0.0117	506	230	853	346	2.46	829	599	253	
0.0129	530	230	876	346	2.53	841	611	265	
0.0143	559	230	906	346	2.61	856	626	280	
0.0155 0.0169	626 674	230 239	973 1011	346 337	2.81 3.00	889 913	660 674	313 337	
0.0189	679	239	1011	337	3.00	915	676	340	
0.0195	708	239	1045	337	3.11	930	691	354	
0.0207	670	250	996	326	3.05	911	661	335	
0.0221	742	230	1089	346	3.14	947	718	371	
0.0233	759	230	1106	346	3.19	956	726	380	
0.0247	751	230	1098	346	3.17	952	722	376	
0.0259 0.0273	706 748	239 230	1043 1094	337 346	3.10 3.16	929 950	690 720	353 374	
0.0273	748	230	1133	356	3.10	950 964	745	388	
0.0299	781	239	1118	337	3.32	967	727	391	
0.0311	755	230	1101	346	3.18	953	724	377	
0.0325	796	239	1132	337	3.36	974	734	398	
0.0337	825	230	1171	346	3.38	988	759	412	
0.0351	756	220	1112	356	3.12	954	734	378	
0.0363	858 832	220 220	1214 1188	356 356	3.41 3.33	1005	785 772	429 416	
0.0377 0.0389	832 854	220 220	1188 1210	356 356	3.33 3.40	992 1003	772	416	
						Skagit Rive		eneral Ir	nvestigation gton
							CU TRIAX		
						Boring DI	01-2 Land	-	•
						June 2010			-1-21199-002
						SHANNON a Geotechnical and Er	& WILSON nvironmental Con	I, INC.	FIG. C-37 (1/8)

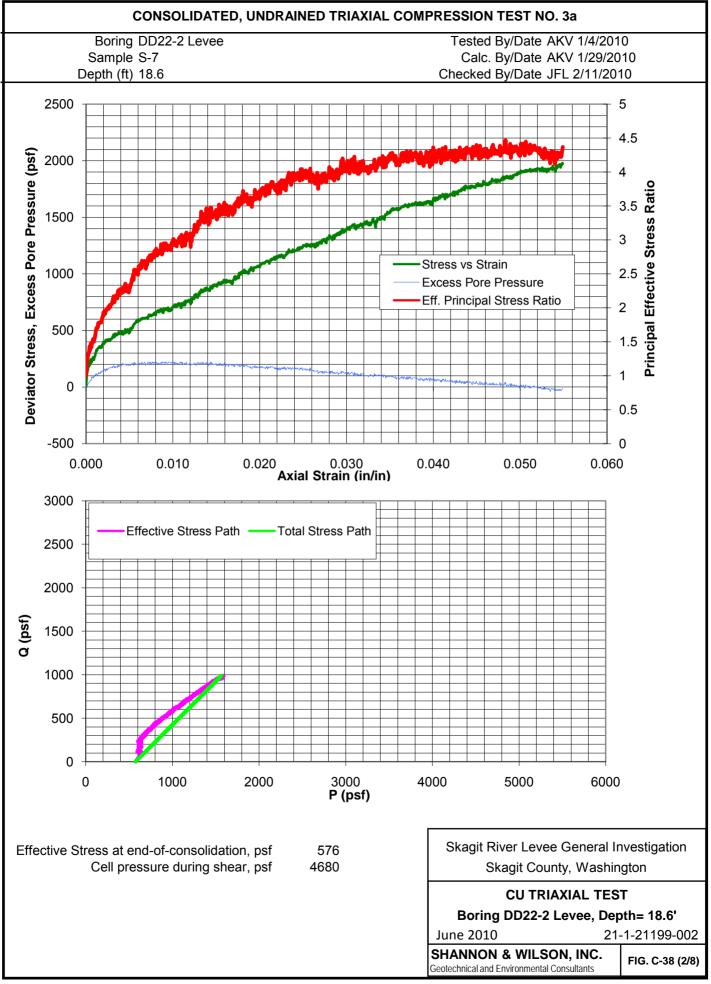

3/3/2010-TXCU_DD1-2Landward_S2_6.2_shear2COMP.xlsx-author

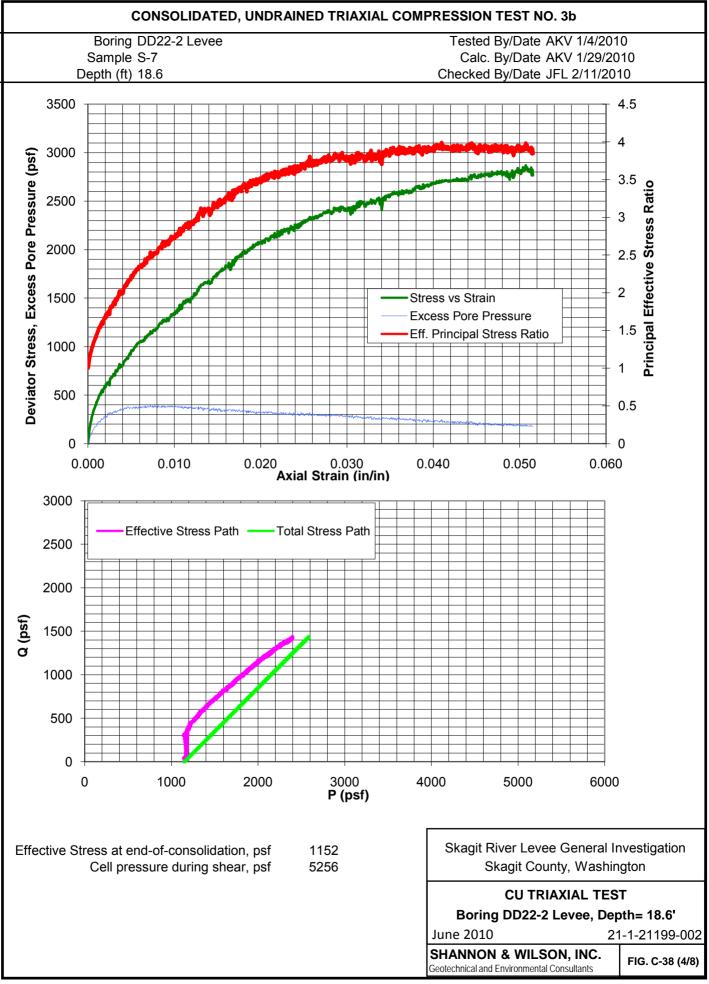

		CONSOLID	ATED, UND	RAINED TRI	AXIAL CO	OMPRESSIO	N TEST 2b)	
	Poring	DD1-2 Lan		MMARY OF	TEST DA		d By/Data	AKV 12/3	0/2000
	Sample		uwalu					AKV 12/3 AKV 1/29	
	Depth (ft)							JFL 2/10/2	
SAMPLE C					SPECI	MEN DATA:		post-	post-
			f organics; N	11			Initial	consol	shear
Cruy, oligit	ly olayoy c		r organico, n		Н	eight, inches	4.660	4.712	4.479
						neter, inches	2.5162	2.5162	_
	B-value at	end of satur	ation phase	1.00		Aspect Ratio	1.85	1.87	
	C	Consolidation	Stress, psf	1152	W	eight, grams	647.29	632.41	632.41
	Cell pre	essure durin	g shear, psf	5184		Water	44.5%	41.1%	41.1%
	Initia	I Pore Press	ure(U ₀), psf	3878	Wet	Density, pcf	106.4	102.8	102.8
		Shear	Rate, in/min	0.0035	Dry	Density, pcf	73.6	72.8	72.8
Axial	Deviator	Excess	Eff. Major	Eff. Minor	Eff. Princ	0			
Strain	Stress	Pore	Principal	Principal	Stress		th Parame	eters (psf)	
inch/inch	psf	Pres. (psf)	•	Stress (psf)	Ratio	Р	P'	ŰQ Ó	
0.0016	435	210	1378	942	1.46	1370	1160	218	_
0.0033	646	299	1498	853	1.76	1475	1175	323	
0.0050	716	359	1509	793	1.90	1510	1151	358	
0.0067	859	399	1611	753	2.14	1581	1182	429	
0.0083	923	429	1645	723	2.28	1613	1184	461	
0.0100	1028	439	1741	713	2.44	1666	1227	514	
0.0116	1092	459	1785	693	2.58	1698	1239	546	
0.0133	1131	489	1794	663	2.71	1717	1228	565	
0.0149	1176	499	1829	653	2.80	1740	1241	588	
0.0166	1221	499	1874	653	2.87	1762	1263	610	
0.0183	1230	509	1873	643	2.91	1767	1258	615	
0.0200	1268	509	1911	643 622	2.97	1786	1277	634	
0.0217	1295 1304	529 519	1918 1027	623 633	3.08 3.06	1799 1804	1270 1285	647 652	
0.0233 0.0250	1304	529	1937 1959	623	3.00 3.14	1804	1205	668	
0.0250	1362	529	1959	623	3.14	1820	1304	681	
0.0283	1389	529	2012	623	3.13	1846	1317	694	
0.0200	1374	539	1987	613	3.24	1839	1300	687	
0.0235	1347	529	1970	623	3.16	1825	1297	673	
0.0333	1402	539	2015	613	3.29	1853	1314	701	
0.0350	1405	539	2018	613	3.29	1854	1316	702	
0.0367	1419	519	2052	633	3.24	1862	1343	710	
0.0383	1404	539	2017	613	3.29	1854	1315	702	
0.0400	1436	549	2039	603	3.38	1870	1321	718	
0.0416	1432	539	2045	613	3.34	1868	1329	716	
0.0433	1435	549	2038	603	3.38	1869	1320	717	
0.0449	1454	539	2068	613	3.37	1879	1340	727	
0.0466	1451	539	2064	613	3.37	1877	1339	725	
0.0483	1470	539	2084	613	3.40	1887	1348	735	
0.0496	1416	539	2029	613	3.31 Г	1860	1321	708	
						Skagit Rive Ska		eneral Inv Washingt	-
						(IAL TEST	
						Boring DI	D1-2 Land	ward, Dep	oth= 6.2'
						June 2010			-21199-002
						SHANNON Geotechnical and Er	& WILSON nvironmental Cor	I, INC. F	IG. C-37 (3/8)



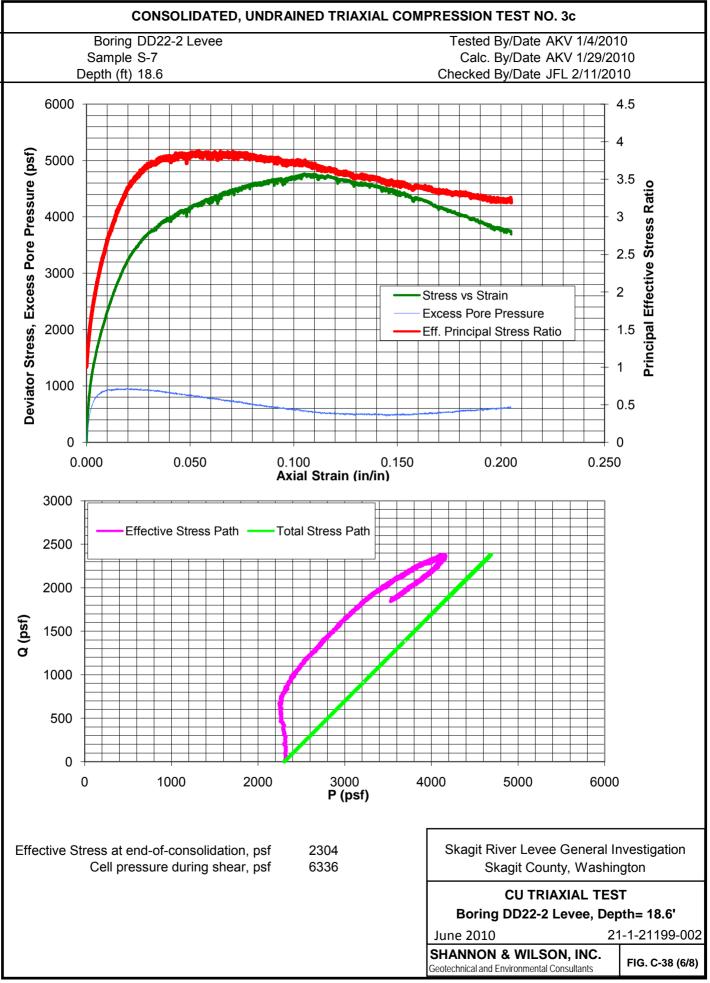
3/3/2010-TXCU_DD1-2Landward_S2_6.2_shear3COMP.xlsx-author

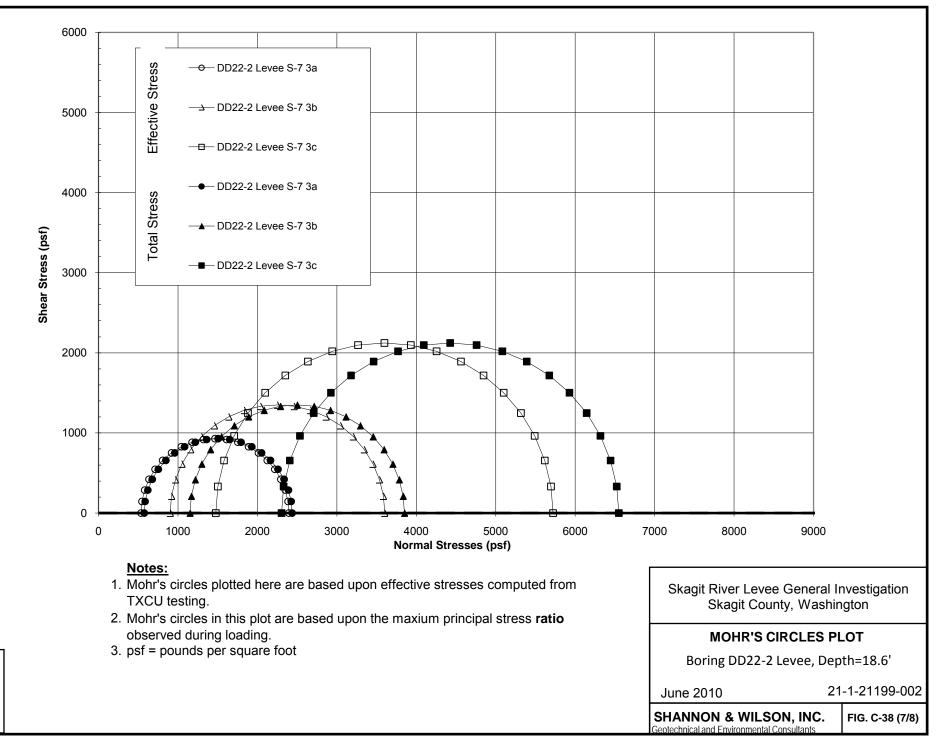
		CONSOLID	ATED, UND	RAINED TRI	AXIAL CO	OMPRESSIO	N TEST 20	;	
	Poring	DD1-2 Lan		MMARY OF	TEST DA		ed By/Date	AKV 12/3	21/2000
	Sample		uwaru				c. By/Date		
	Depth (ft)						ed By/Date		
SAMPLE (CLASSIFIC	ATION:			SPECI	MEN DATA:		post-	post-
			f organics; N	1L			Initial	consol	•
<i>,</i> , , , , , , , , , , , , , , , , , ,	, , ,	,	0 /		H	eight, inches	4.479	4.520	3.454
					Dian	neter, inches	2.5812	2.5812	
	B-value at	end of satur	ation phase	1.00		Aspect Ratio	1.74	1.75	
	C	Consolidatior	n Stress, psf	2304	W	eight, grams	637.89	632.41	632.41
	Cell pre	essure durin	g shear, psf	6336		Water	42.4%	41.1%	41.1%
	Initia	I Pore Press	ure(U ₀), psf	3838	Wet	Density, pcf	103.7	101.8	101.8
		Shear	Rate, in/min	0.0035	Dry	Density, pcf	72.8	72.2	72.2
Axial	Deviator	Excess	Eff. Major	Eff. Minor	Eff. Princ	2			
Strain	Stress	Pore	Principal	Principal	Stress		th Parame	eters (psf)	
inch/inch	psf		Stress (psf)	•	Ratio	P	P'	Q	
0.0079	1725	988	3041	1316	2.31	3166	2178	862	_
0.0157	2149	1208	3246	1096	2.96	3379	2171	1075	
0.0236	2331	1307	3327	997	3.34	3469	2162	1165	
0.0314	2409	1337	3375	967	3.49	3508	2171	1204	
0.0393	2496	1347	3452	957	3.61	3552	2205	1248	
0.0472	2575	1337	3542	967	3.66	3592	2254	1288	
0.0550	2594	1347	3550	957	3.71	3601	2254	1297	
0.0629	2649	1337	3616	967	3.74	3629	2291	1325	
0.0708	2703	1327	3679	977	3.77	3655	2328	1351	
0.0787	2723	1327	3700	977	3.79	3666	2338	1362	
0.0865	2744	1297	3750	1007	3.73	3676	2378	1372	
0.0944	2779	1287	3795	1017	3.73	3693	2406	1389	
0.1022 0.1101	2771 2794	1297 1277	3778 3820	1007 1027	3.75	3690 3701	2392 2423	1386 1397	
0.1101	2794	1277	3820	1027	3.72 3.74	3701	2423	1405	
0.11258	2746	1257	3793	1027	3.62	3677	2432	1405	
0.1230	2782	1237	3839	1047	3.63	3695	2420	1373	
0.1337	2817	1247	3873	1057	3.67	3712	2448	1408	
0.1494	2822	1208	3918	1096	3.57	3715	2507	1400	
0.1573	2801	1208	3897	1096	3.55	3704	2497	1400	
0.1652	2809	1178	3935	1126	3.49	3709	2531	1405	
0.1730	2778	1188	3895	1116	3.49	3693	2506	1389	
0.1809	2771	1178	3897	1126	3.46	3690	2512	1386	
0.1888	2768	1178	3895	1126	3.46	3688	2511	1384	
0.1966	2761	1188	3877	1116	3.47	3684	2497	1380	
0.2045	2753	1178	3879	1126	3.44	3680	2503	1376	
0.2123	2730	1188	3847	1116	3.45	3669	2482	1365	
0.2202	2703	1178	3829	1126	3.40	3655	2478	1351	
0.2281	2676	1178	3802	1126	3.38	3642	2464	1338	
0.2358	2605	1168	3742	1136	3.29	3607	2439	1303	
						Skagit Rive Ska	er Levee G git County,		-
						(CU TRIAX	IAL TEST	•
						Boring D	D1-2 Land	dward, De	epth= 6.2'
						June 2010		21-	1-21199-002
						SHANNON Geotechnical and Er	& WILSON	I, INC.	FIG. C-37 (5/8)

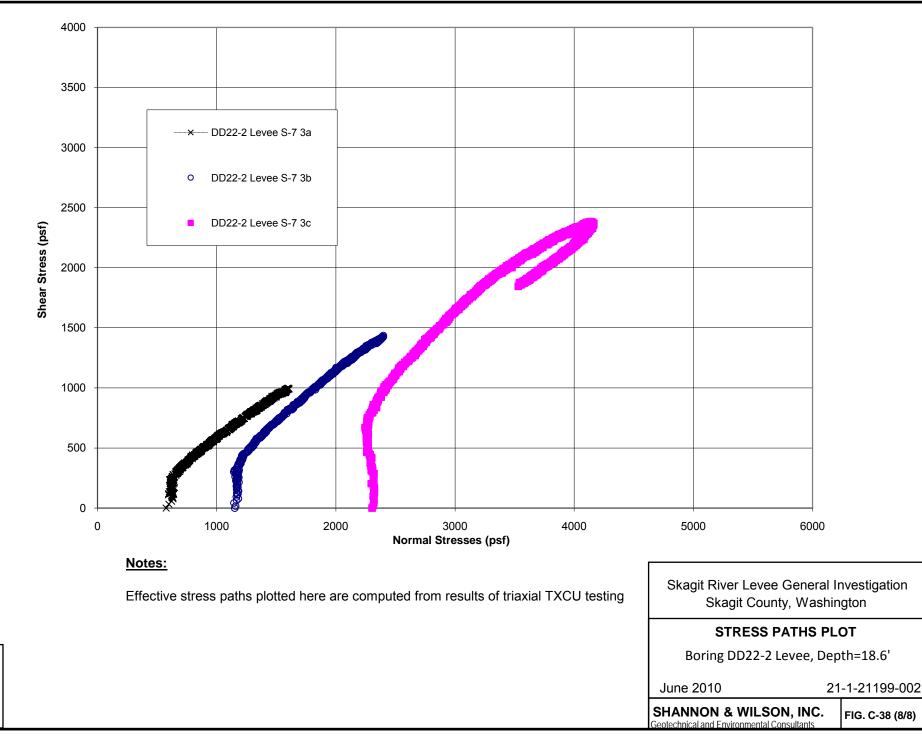



3/3/2010-TXCU_DD22-2Levee_S7_18.6_shear1COMP.xlsx-author

		CONSOLID	-	RAINED TRI MMARY OF		DMPRESSIOI	N TEST 3a	1	
	Boring	DD22-2 Lev			IESI DA	Teste	ed By/Date		
	Sample						c. By/Date		
	Depth (ft)	18.6				Checke	ed By/Date	JFL 2/1	1/2010
SAMPLE C					SPECI	MEN DATA:		post-	post-
Gray-browi	n, slightly c	layey SILT;	scattered ore	ganics; ML		_	Initial	conso	
						eight, inches	6.076	5.839	
						neter, inches	2.5337	2.533	
		end of satur	•	0.99		Aspect Ratio	2.40	2.30	
		consolidation		576	W	eight, grams	884.08	856.0	
		essure durin	- ·	4680		Water	41.1%	36.7%	
	Initia	Pore Press	ure(U ₀), psf	4118	Wet	Density, pcf	109.9	110.8	8 110.8
		Shear I	Rate, in/min	0.0035	Dry	Density, pcf	77.9	81.1	81.1
Axial	Deviator	Excess	Eff. Major	Eff. Minor	Eff. Princ	>			
Strain	Stress	Pore	Principal	Principal	Stress	Stress Pa	th Parame	eters (psf)
inch/inch	psf	Pres. (psf)	Stress (psf)	Stress (psf)	Ratio	Р	P'	Q	
0.0019	376	140	812	436	1.86	764	624	188	
0.0037	469	180	866	396	2.18	811	631	235	
0.0056	557	220	913	356	2.56	854	635	278	
0.0074	632	220	988	356	2.77	892	672	316	
0.0093	695	210	1061	366	2.90	923	714	347	
0.0112	740	210	1106	366	3.02	946	736	370	
0.0131	814	210	1181	366	3.22	983	774	407	
0.0149	894	200	1271	376	3.38	1023	824	447	
0.0168	933	190	1319	386	3.41	1042	853	466	
0.0186	1018	180	1415	396	3.57	1085	905	509	
0.0205	1097	170	1504	406	3.70	1125	955	549	
0.0224	1147	150	1573	426	3.69	1150	1000	574	
0.0243	1208	160	1624	416	3.90	1180	1020	604	
0.0261	1263	150	1689	426	3.96	1208	1058	632	
0.0280	1318	130	1764	446	3.95	1235	1105	659	
0.0298	1378	120	1834	456	4.02	1265	1145	689	
0.0317	1438	110	1904	466	4.09	1295	1185	719	
0.0336	1487	100	1963	476	4.12	1319	1219	743	
0.0354	1564	90	2050	486	4.22	1358	1268	782	
0.0373	1606	80	2102	496	4.24	1379	1299	803	
0.0392	1636	80	2132	496	4.30	1394	1314	818	
0.0410	1695	70	2201	506	4.35	1423	1354	847	
0.0429	1736	40	2273	536	4.24	1444	1404	868	
0.0448	1772	30	2318	546	4.25	1462	1432	886	
0.0466	1802	20	2358	556	4.24	1477	1457	901	
0.0485	1848	20	2404	556	4.32	1500	1480	924	
0.0504	1901	20	2456	556	4.42	1526	1506	950	
0.0523	1930	0	2506	576	4.35	1541	1541	965	
0.0541	1931	-30	2537	606	4.19	1541	1571	965	
0.0549	1974	-10	2560	586	4.37	1563	1573	987	
						-	er Levee G git County		vestigation gton
					ł		CU TRIAX	IAL TES	т
						Boring D	D22-2 Lev	vee, Dep	th= 18.6'
						June 2010		21	-1-21199-0
						SHANNON Geotechnical and El	& WILSON	N, INC.	FIG. C-38 (1


3/3/2010-TXCU_DD22-2Levee_S7_18.6_shear2COMP.xlsx-author


		CONSOLID					N TEST 3b		
	Boring	DD22-2 Le		MMARY OF	TEST DA		d Bv/Date	AKV 1/4/2	2010
	Sample							AKV 1/29/	
	Depth (ft)							JFL 2/11/2	
	CLASSIFIC				SPECI	MEN DATA:		post-	post-
			scattered or	nanice: MI	SFECI	WIEN DATA.	Initial	consol	shea
Jiay-DIOW	n, siignuy c	layey SILT,	scallered org	Janics, ML	Ц	eight, inches	5.518	5.628	5.338
						neter, inches	2.6082	2.6082	0.000
	R-value at	end of satur	ation phase	0.99		Aspect Ratio	2.0002	2.0002	
			n Stress, psf	1152		eight, grams	881.48	856.08	856.0
			g shear, psf	5256	vv	Water	40.7%	36.7%	36.7%
	•		sure(U_0), psf	4128	\\/ot		113.9	108.4	108.4
	milia		, .			Density, pcf			
		Shear	Rate, in/min	0.0035	Dry	Density, pcf	80.9	79.4	79.4
Axial	Deviator	Excess	Eff. Major	Eff. Minor	Eff. Princ	;			
Strain	Stress	Pore	Principal	Principal	Stress	Stress Pa	th Parame	eters (psf)	
inch/inch	psf		Stress (psf)	u /	Ratio	Р	P'	Q	
0.0017	529	249	1432	903	1.59	1417	1167	265	
0.0034	758	339	1571	813	1.93	1531	1192	379	
0.0052	959	359	1751	793	2.21	1631	1272	479	
0.0069	1119	389	1881	763	2.47	1711	1322	559	
0.0087	1256	379	2029	773	2.62	1780	1401	628	
0.0104	1381	379	2154	773	2.79	1843	1463	691	
0.0121	1495	369	2278	783	2.91	1900	1530	748	
0.0139	1653	369	2436	783	3.11	1979	1609	827	
0.0156	1783	339	2596	813	3.19	2043	1704	891	
0.0173	1918	329	2741	823	3.33	2111	1782	959	
0.0190	2013	329	2836	823	3.45	2159	1829	1007	
0.0208	2108	309	2951	843	3.50	2206	1897	1054	
0.0225	2159	309	3002	843	3.56	2231	1922	1079	
0.0242	2220	299	3073	853	3.60	2262	1963	1110	
0.0260	2309	289	3172	863	3.68	2307	2017	1155	
0.0277	2403	289	3265	863	3.79	2353	2064	1201	
0.0294	2436	299	3289	853	3.86	2370	2071	1218	
0.0312	2480	279	3353	873	3.84	2392	2113	1240	
0.0329	2475	249	3377	903	3.74	2389	2140	1237	
0.0347	2551	259	3443	893	3.86	2427	2168	1275	
0.0364	2611	259	3503	893	3.93	2457	2198	1305	
0.0381	2643	249	3546	903	3.93	2474	2224	1322	
0.0398	2681	230	3604	922	3.91	2493	2263	1341	
0.0416	2708	230	3630	922	3.94	2506	2276	1354	
0.0433	2713	219	3645	933	3.91	2508	2289	1356	
0.0450	2740	210	3682	942	3.91	2522	2312	1370	
0.0468	2760	190	3723	962	3.87	2532	2343	1380	
0.0485	2808	200	3761	952	3.95	2556	2357	1404	
0.0502	2802	180	3775	972	3.88	2553	2374	1401	
0.0515	2765	180	3738	972	3.84	2535	2355	1383	
						Skagit Rive Skag		eneral Invo Washingt	-
					ſ	(CU TRIAXI	IAL TEST	
						Boring D	D22-2 Lev	vee, Depth	= 18.6'
						June 2010		21-1	-21199-0
						SHANNON & Geotechnical and Er		I, INC.	IG. C-38 (3



3/3/2010-TXCU_DD22-2Levee_S7_18.6_shear3COMP.xlsx-author

							N TEST 30	;	
	Borina	DD22-2 Le		MMARY OF	TEST DA		d Bv/Date	AKV 1/4	/2010
Sample S-7					Tested By/Date AKV 1/4/2010 Calc. By/Date AKV 1/29/2010				
	Depth (ft)						ed By/Date		
SAMPLE (CLASSIFIC	CATION:			SPECII	MEN DATA:		post-	post-
Gray-brown, slightly clayey SILT; scattered organics; ML							Initial	conso	•
,	, O ,	, , , , , , , , , , , , , , , , , , ,			He	eight, inches	5.338	5.439	
						eter, inches	2.6781	2.678	1
B-value at end of saturation phase 0.99					ŀ	Aspect Ratio	1.99	2.03	
Consolidation Stress, psf 2304					We	eight, grams	869.08	856.08	856.08
Cell pressure during shear, psf 6336						Water	38.7%	36.7%	36.7%
Initial Pore Pressure(U ₀), psf 4058				Wet	Density, pcf	110.1	106.4	106.4	
		Shear	Rate, in/min	0.0035	Dry	Density, pcf	79.4	77.9	77.9
Axial	Deviator	Excess	Eff. Major	Eff. Minor	Eff. Princ	<u>,</u>			
Strain	Stress	Pore	Principal	Principal	Stress		th Parame	ters (nsf))
nch/inch	psf		Stress (psf)	•	Ratio				/
0.0068	1907	878	3333	1426	2.34	3258	2379	954	
0.0136	2694	918	4080	1386	2.94	3651	2733	1347	
0.0205	3270	938	4636	1366	3.39	3939	3001	1635	
0.0273	3609	928	4985	1376	3.62	4108	3180	1804	
0.0341	3808	908	5204	1396	3.73	4208	3300	1904	
0.0410	3952	868	5388	1436	3.75	4280	3412	1976	
0.0478	4109	838	5575	1466	3.80	4359	3520	2055	
0.0546	4233	798	5739	1506	3.81	4421	3622	2117	
0.0615	4345	769	5880	1535	3.83	4476	3708	2172	
0.0683	4435	739	6000	1565	3.83	4521	3783	2217	
0.0751	4508	719	6093	1585	3.84	4558	3839	2254	
0.0820	4569	669	6204	1635	3.79	4588	3920	2284	
0.0888	4619	639	6285	1665	3.77	4614	3975	2310	
0.0956	4630	599	6335	1705	3.72	4619	4020	2315	
0.1025	4741	579	6466	1725	3.75	4674	4095	2370	
0.1093	4748	529	6523	1775	3.68	4678	4149	2374	
0.1162	4713	519	6498	1785	3.64	4661	4142	2357	
0.1230	4664	509	6459	1795	3.60	4636	4127	2332	
0.1298	4619	489	6434	1815	3.55	4614	4125	2310	
0.1367	4528	499	6333	1805	3.51	4568	4069	2264	
0.1434	4494	479	6319	1825	3.46	4551	4072	2247	
0.1503	4400	509	6194	1795	3.45	4504	3995	2200	
0.1571	4311	479	6136	1825	3.36	4459	3980	2155	
0.1640	4272	519	6057	1785	3.39	4440	3921	2136	
0.1708	4162	529	5937	1775	3.35	4385	3856	2081	
0.1776	4094	539	5859	1765	3.32	4351	3812	2047	
0.1845	3991	559	5736	1745	3.29	4299	3740	1995	
0.1913	3884	569	5619	1735	3.24	4246	3677	1942	
0.1981	3809	599	5514	1705	3.23	4208	3610	1904	
0.2049	3692	619	5377	1685	3.19 Г	4150	3531	1846	
						Skagit River Levee General Investigation Skagit County, Washington			
						CU TRIAXIAL TEST			
						Boring D	D22-2 Lev	vee, Dept	th= 18.6'
					-	June 2010		21	-1-21199-0
						SHANNON & Geotechnical and Er		I, INC.	FIG. C-38 (5

ų	в	IJ
0	_	~

Wet+Tare

Dry+Tare

Tare WC, %

DESCRIPTION:

SL	141	NN	ON	18	۱N	n.	S	n	N	10	JC	
		NICAL										
400 N	ORTH	34TH 8	TREE	T·SI	JITE	100						

400 NORTH 34TH STREET • SUITE 100 P.O. BOX 300303 • SEATTLE, WASHINGTON 98103 206-632-8020 FAX 206-695-6777

309.94

262.71

102.99

29.6

Project	Skagit River Levees
Boring No.	DD1-1 Landward
Sample No.	S-2/S-3
Depth (ft)	5.0/7.5

WATER CONTENT DATA:							
	Before Test After Te						
Pan No.	tin cup	Z-24					

55.81

45.58

3.09

24.1

Gray-brown, silty, fine SAND; SM

 $k = \frac{aL}{2At} ln(\frac{h_1}{h_2})$

 $k_{20} = R_T k$

	SPECIMEN DATA:			
t		Before Test	After Consol.	After Test
	Height, m	0.0505	0.0501	0.0500
	Diameter, m	0.0553	0.0553	0.0553
	Wet Weight, g	199.17	199.07	206.95
	Volume, ml	121.4	120.4	120.2
	Area, m ²	0.00240	0.00240	0.00240
	Wet Unit Wt, pcf	102.4	103.2	107.5
	Dry Unit Wt, pcf	82.5	79.6	82.9
	Est. Saturation,%	62.4	71.5	77.4

FALLING-HEAD INCREASING TAILWATER LEVEL HYDRAULIC CONDUCTIVITY CALCULATION (METHOD C):

a = cross-sectional area of standpipe, m²

L = length of the sample, m

A = cross-sectional area of the sample, m^2

t = elapsed time between determination of h_1 and h_2 , sec.

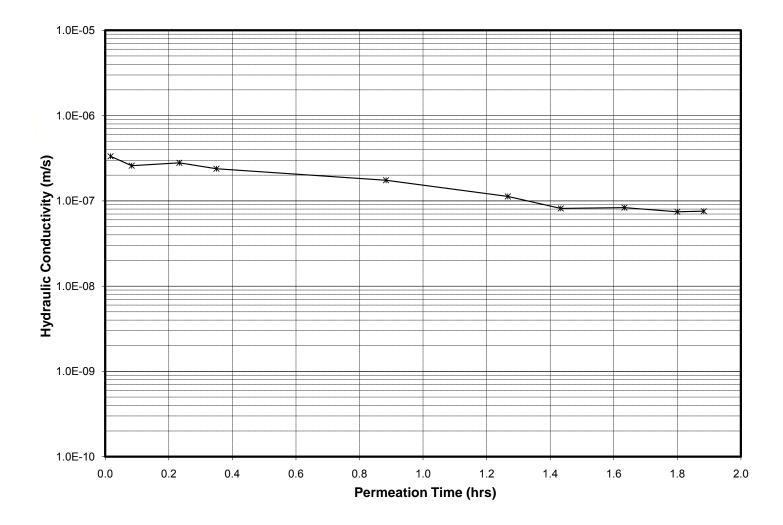
Job No.	21-1-21	199-002	
Tested By	AKV	On	1/27/2010
Comp By	AKV	On	2/2/2010
Checked By	JFL	On	2/5/2010

OTHER INFORMATION:

Burette Corr. Factor, BCF (vol. to height), 1ml = 0.0047 m a = 2.13E-04 m ²								
Specific Gravity	Assumed	Meas	sured	=	2.7			
B-Coefficient =	0.97		NOTE:					
Volume of Solid =	59.5	ml	Sample co	omprised of				
Pore Volume (P.V.)=	61.9	ml	95% S-2,	5% S-3				

 h_1 = head loss across the specimen at time t_1 , m,

- h_2 = head loss across the specimen at time t_2 , m,
- k_{20} = corrected hydraulic conductivity at temperature of 20 °C
- R_T = correction factor for viscosity of water at various temperatures, T
 - = 2.2902(0.9842^T)/T^{0.1702}


MEASURED DATA:

R	ead Ti	me	Elapsed	Temp	Press	ure Re	adings		Burette Readings			Head Loss	Effective	Stresses		Calculated FI	ow Volumes		Gradient K R_{τ}			k ₂₀		
			Time	Т	P _{cell}	P _{in}	Pout	V _{cell}	V _{in}	V _{out}	H _{cell}	H _{in}	H _{out}	h	σ' _{max}	σ'_{min}	Inflow	Outflow	Storage	Cum.	(i)			
day	hr	min	(hr)	(°C)	(psi)	(psi)	(psi)	(ml)	(ml)	(ml)	(m)	(m)	(m)	(m)	(psi)	(psi)	(ml)	(ml)	(ml)	P.V.		(m/sec)		(m/sec)
1	0	0	0.00	22.2	75.0	71.5	70.1	0.0	100.2	1.0	0.000	0.471	0.005	1.401	4.8	2.8				0	27.7			
1	0	1	0.02	22.2	75.0	71.5	70.1	0.0	98.9	2.5	0.000	0.465	0.012	1.388	4.8	2.8	1.3	1.5	-0.2	0.0226	27.5	3.5E-07	0.949	3.3E-07
1	0	5	0.08	22.2	75.0	71.5	70.1	0.0	94.6	6.7	0.000	0.445	0.031	1.348	4.8	2.9	4.3	4.2	0.1	0.0913	26.7	2.7E-07	0.949	2.6E-07
1	0	14	0.23	22.2	75.0	71.5	70.1	0.0	84.6	16.4	0.000	0.398	0.077	1.255	4.7	2.9	10.0	9.7	0.3	0.2504	24.9	2.9E-07	0.949	2.8E-07
1	0	21	0.35	22.2	75.0	71.5	70.1	0.0	78.4	22.5	0.000	0.368	0.106	1.198	4.7	3.0	6.2	6.1	0.1	0.3497	23.7	2.5E-07	0.949	2.4E-07
1	0	53	0.88	22.2	75.0	71.5	70.1	0.0	59.8	41.1	0.000	0.281	0.193	1.023	4.6	3.1	18.6	18.6	0.0	0.6502	20.3	1.8E-07	0.949	1.7E-07
1	1	16	1.27	22.2	75.0	71.5	70.1	0.0	52.1	48.8	0.000	0.245	0.229	0.950	4.5	3.2	7.7	7.7	0.0	0.7746	18.8	1.2E-07	0.949	1.1E-07
1	1	26	1.43	22.2	75.0	71.5	70.1	0.0	49.8	51.1	0.000	0.234	0.240	0.929	4.5	3.2	2.3	2.3	0.0	0.8118	18.4	8.6E-08	0.949	8.1E-08
1	1	38	1.63	22.2	75.0	71.5	70.1	0.0	47.1	53.9	0.000	0.221	0.253	0.903	4.5	3.2	2.7	2.8	-0.1	0.8562	17.9	8.8E-08	0.949	8.3E-08
1	1	48	1.80	22.2	75.0	71.5	70.1	0.0	45.1	55.9	0.000	0.212	0.263	0.884	4.5	3.2	2.0	2.0	0.0	0.8885	17.5	7.8E-08	0.949	7.4E-08
1	1	53	1.88	22.2	75.0	71.5	70.1	0.0	44.1	56.9	0.000	0.207	0.267	0.875	4.4	3.2	1.0	1.0	0.0	0.9046	17.3	8.0E-08	0.949	7.6E-08
																						Average for	or last 4:	7.9E-08

Project	Skagit River Levees
Boring No.	DD1-1 Landward
Sample No.	S-2/S-3
Depth (ft)	5.0/7.5

Job No.	21-1-21199-002		
Tested by	AKV	On	1/27/2010
Comp by	AKV	On	2/2/2010
Checked by	JFL	On	2/5/2010

SHANNON & WILSON, INC.
GEDTECHNICAL AND ENVIRONMENTAL CONSULTANTS
the trademit of the second of the last

400 NORTH 34TH STREET • SUITE 100 P.O. BOX 300303 • SEATTLE, WASHINGTON 98103 206-632-8020 FAX 206-695-6777

Project	Skagit River Levees
Boring No.	DD1-1 Levee
Sample No.	S-10
Depth (ft)	27.4

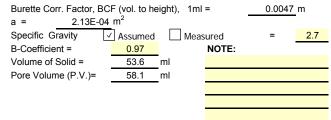
	Before Test	After Test
Pan No.	tin cup	Z-24
Wet+Tare	130.76	309.94
Dry+Tare	93.76	262.71
Tare	2.99	102.99
WC, %	40.8	29.6
DESCRIPT	ION:	
Gray-brown	n, fine sandy Sl	LT; ML

SPECIMEN DATA:			
	Before Test	After Consol.	After Test
Height, m	0.0557	0.0555	0.0553
Diameter, m	0.0505	0.0505	0.0505
Wet Weight, g	203.76	203.66	206.95
Volume, ml	111.7	111.3	110.9
Area, m ²	0.00201	0.00201	0.00201
Wet Unit Wt, pcf	113.8	114.2	116.5
Dry Unit Wt, pcf	80.9	88.2	89.9
Est. Saturation,%	101.6	87.6	91.3

FALLING-HEAD INCREASING TAILWATER LEVEL HYDRAULIC CONDUCTIVITY CALCULATION (METHOD C): a = cross-sectional area of standpipe, m²

 $k = \frac{aL}{2At} ln(\frac{h_1}{h_2})$

 $k_{20} = R_T k$


L = length of the sample, m

A = cross-sectional area of the sample, m^2

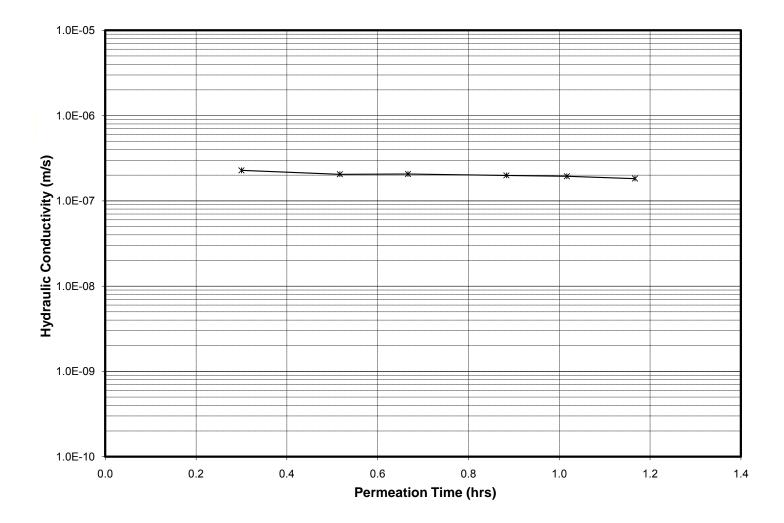
t = elapsed time between determination of h_1 and h_2 , sec.

Job No.	21-1-21	199-002	
Tested By	AKV	On	1/19/2010
Comp By	AKV	On	2/2/2010
Checked By	JFL	On	2/5/2010

OTHER INFORMATION:

 h_1 = head loss across the specimen at time t_1 , m,

- h_2 = head loss across the specimen at time t_2 , m,
- k₂₀ = corrected hydraulic conductivity at temperature of 20 °C
- R_T = correction factor for viscosity of water at various temperatures, T
- $= 2.2902(0.9842^{T})/T^{0.1702}$


MEASURED DATA:

Re	ead Ti	me	Elapsed	Temp	Press	ure Re	adings			Burett	e Readir	ngs		Head Loss	Effective	Stresses		Calculated FI	ow Volumes	;	Gradient	K	RT	k ₂₀
			Time	Т	P _{cell}	Pin	Pout	V _{cell}	V _{in}	V _{out}	H _{cell}	H _{in}	H _{out}	h	σ' _{max}	σ'_{min}	Inflow	Outflow	Storage	Cum.	(i)			
day	hr	min	(hr)	(°C)	(psi)		(psi)		(ml)	(ml)	(m)	(m)	(m)	(m)	(psi)	(psi)	(ml)	(ml)	(ml)	P.V.		(m/sec)		(m/sec)
1	0	0	0.00	22.7	48.9	37.0	35.0	0.0	90.0	7.5	0.000	0.423	0.035	1.740	13.8	11.3				0	31.2			
1	0	18	0.30	22.7	48.9	37.0	35.0	0.0	74.0	23.0	0.000	0.348	0.108	1.592	13.7	11.4	16.0	15.5	0.5	0.2711	28.6	2.4E-07	0.938	2.3E-07
1	0	31	0.52	22.7	48.9	37.0	35.0	0.0	64.5	32.5	0.000	0.303	0.153	1.502	13.6	11.5	9.5	9.5	0.0	0.4346	27.0	2.2E-07	0.938	2.1E-07
1	0	40	0.67	22.7	48.9	37.0	35.0	0.0	58.2	38.8	0.000	0.274	0.182	1.443	13.6	11.5	6.3	6.3	0.0	0.5430	25.9	2.2E-07	0.938	2.1E-07
1	0	53	0.88	22.7	48.9	37.0	35.0	0.0	49.9	47.2	0.000	0.235	0.222	1.365	13.5	11.6	8.3	8.4	-0.1	0.6867	24.5	2.1E-07	0.938	2.0E-07
1	1	1	1.02	22.7	48.9	37.0	35.0	0.0	45.1	52.0	0.000	0.212	0.244	1.319	13.5	11.6	4.8	4.8	0.0	0.7693	23.7	2.1E-07	0.938	1.9E-07
1	1	10	1.17	22.7	48.9	37.0	35.0	0.0	40.2	56.9	0.000	0.189	0.267	1.273	13.4	11.6	4.9	4.9	0.0	0.8536	22.9	1.9E-07	0.938	1.8E-07
	l																						1	
																						Average for	or last 4:	2.0E-07

Project	Skagit River Levees
Boring No.	DD1-1 Levee
Sample No.	S-10
Depth (ft)	27.4

Job No.	21-1-21199-002		
Tested by	AKV	On	1/19/2010
Comp by	AKV	On	2/2/2010
Checked by	JFL	On	2/5/2010

	SHANNON & WILSON, INC.
- 40	GEOTECHNICAL AND ENVIRONMENTAL CONSULTANTS

400 NORTH 34TH STREET + SUITE 100 P.O. BOX 300303 + SEATTLE, WASHINGTON 98103 206-632-8020 FAX 206-695-6777

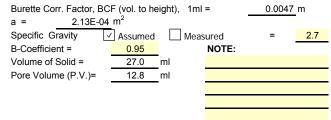
Project	Skagit River Levees
Boring No.	DD3-1 Landward
Sample No.	D-12
Depth (ft)	40

WATER C	ONTENT DAT	A:				
	Before Test	After Test				
Pan No.	tin cup	Z-24				
Wet+Tare	104.26	194.15				
Dry+Tare	90.29	182.19				
Tare	3.07	109.86				
WC, %	16.0	16.5				
DESCRIPT	ION:					
Gray, silty,	fine to medium	SAND, trace				
of clay; trac	e of shell fragr	ments; SM				

SPECIMEN DATA:			
	Before Test	After Consol.	After Test
Height, m	0.0403	0.0402	0.0402
Diameter, m	0.0355	0.0355	0.0355
Wet Weight, g	84.62	84.42	84.29
Volume, ml	39.8	39.7	39.8
Area, m ²	0.00099	0.00099	0.00099
Wet Unit Wt, pcf	132.6	132.5	132.2
Dry Unit Wt, pcf	114.3	113.7	113.5
Est. Saturation,%	91.2	92.7	92.1

FALLING-HEAD INCREASING TAILWATER LEVEL HYDRAULIC CONDUCTIVITY CALCULATION (METHOD C): a = cross-sectional area of standpipe, m²

 $k = \frac{aL}{2At}ln(\frac{h_1}{h_2})$


L = length of the sample, m

A = cross-sectional area of the sample, m^2

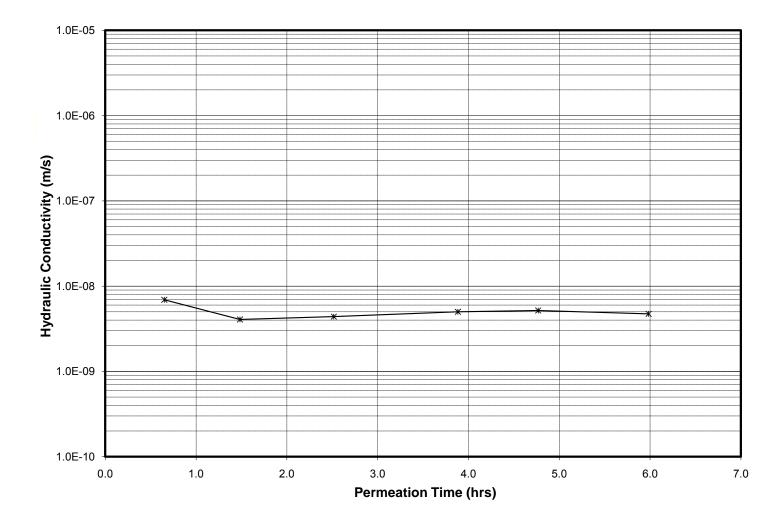
t = elapsed time between determination of h_1 and h_2 , sec.

Job No.	21-1-21	199-002	
Tested By	AKV	On	1/28/2010
Comp By	AKV	On	2/2/2010
Checked By	JFL	On	2/5/2010

OTHER INFORMATION:

 h_1 = head loss across the specimen at time t_1 , m,

- h_2 = head loss across the specimen at time t_2 , m,
- k₂₀ = corrected hydraulic conductivity at temperature of 20 °C
- R_T = correction factor for viscosity of water at various temperatures, T
- $= 2.2902(0.9842^{T})/T^{0.1702}$


MEASURED DATA:

Re	ad Ti	me	Elapsed	Temp	Press	ure Re	adings			Burett	e Readir	ngs		Head Loss	Effective	Stresses		Calculated FI	ow Volumes	;	Gradient	К	RT	k ₂₀
			Time	Т	P _{cell}	Pin	Pout	V _{cell}	Vin	Vout	H _{cell}	H _{in}	H _{out}	h	σ' _{max}	σ' _{min}	Inflow	Outflow	Storage	Cum.	(i)			
day	hr	min	(hr)		(psi)	(psi)	(psi)	(ml)	(ml)	(ml)	(m)	(m)	(m)	(m)	(psi)	(psi)	(ml)	(ml)	(ml)	P.V.		(m/sec)		(m/sec)
1	14	35	0.00	22.0	67.0	51.5	50.5	0.0	79.8	16.3	0.000	0.375	0.077	0.962	16.3	15.0				0	23.9			
1	15	14	0.65	22.0	67.0	51.5	50.5	0.0	79.4	16.7	0.000	0.373	0.078	0.958	16.3	15.0	0.4	0.4	0.0	0.0312	23.8	7.3E-09	0.953	6.9E-09
1	16	4	1.48				50.5		79.1	17.0	0.000	0.372	0.080	0.955	16.3	15.0	0.3	0.3	0.0	0.0546	23.7	4.3E-09	0.953	4.1E-09
1	17	6	2.52	22.0	67.0	51.5	50.5	0.0	78.7	17.4	0.000	0.370	0.082	0.952	16.3	15.0	0.4	0.4	0.0	0.0859	23.6	4.6E-09	0.953	4.4E-09
1	18	28	3.88	22.0	67.0	51.5	50.5	0.0	78.1	18.0	0.000	0.367	0.085	0.946	16.3	15.0	0.6	0.6	0.0	0.1327	23.5	5.2E-09	0.953	5.0E-09
1	19	21	4.77	22.0	67.0	51.5	50.5	0.0	77.7	18.4	0.000	0.365	0.086	0.942	16.3	15.0	0.4	0.4	0.0	0.1639	23.4	5.4E-09	0.953	5.2E-09
1	20	34	5.98	22.0	67.0	51.5	50.5	0.0	77.2	18.9	0.000	0.363	0.089	0.938	16.3	15.0	0.5	0.5	0.0	0.2030	23.3	5.0E-09	0.953	4.7E-09
																						Average for	or last 4:	4.8E-09

Project	Skagit River Levees
Boring No.	DD3-1 Landward
Sample No.	D-12
Depth (ft)	40

Job No.	21-1-21199-002		
Tested by	AKV	On	1/28/2010
Comp by	AKV	On	2/2/2010
Checked by	JFL	On	2/5/2010

= III	SHANNON & WILSON, INC.
	GEOTECHNICAL AND ENVIRONMENTAL CONSULTANTS
	400 NORTH 34TH STREET + SUITE 100

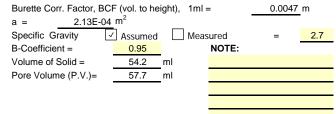
400 NORTH 34TH STREET • SUITE 100 P.O. BOX 300303 • SEATTLE, WASHINGTON 98103 206-632-8020 FAX 206-695-6777

Project	Skagit River Levees
Boring No.	DD3-1 Levee
Sample No.	S-7
Depth (ft)	18.1

WATER CO	ONTENT DATA	A:	_	SPECIMEN DATA:			
	Before Test	After Test			Before Test	After Consol.	After Test
Pan No.	tin cup	Z-24		Height, m	0.0556	0.0550	0.0550
Wet+Tare	125.74	297.34		Diameter, m	0.0506	0.0506	0.0506
Dry+Tare	94.90	243.35		Wet Weight, g	195.39	194.39	198.77
Tare	2.96	98.57		Volume, ml	111.8	110.6	110.6
WC, %	33.5	37.3		Area, m ²	0.00201	0.00201	0.00201
DESCRIPT	ION:		-	Wet Unit Wt, pcf	109.0	109.7	112.1
Gray-brown	n, silty, fine SAI	ND;		Dry Unit Wt, pcf	81.6	79.9	81.7
oxide staini	ng; trace of org	anics; SM		Est. Saturation,%	85.1	90.8	94.7
-			-				

FALLING-HEAD INCREASING TAILWATER LEVEL HYDRAULIC CONDUCTIVITY CALCULATION (METHOD C):

a = cross-sectional area of standpipe, m²


L = length of the sample, m

A = cross-sectional area of the sample, m^2

t = elapsed time between determination of h_1 and h_2 , sec.

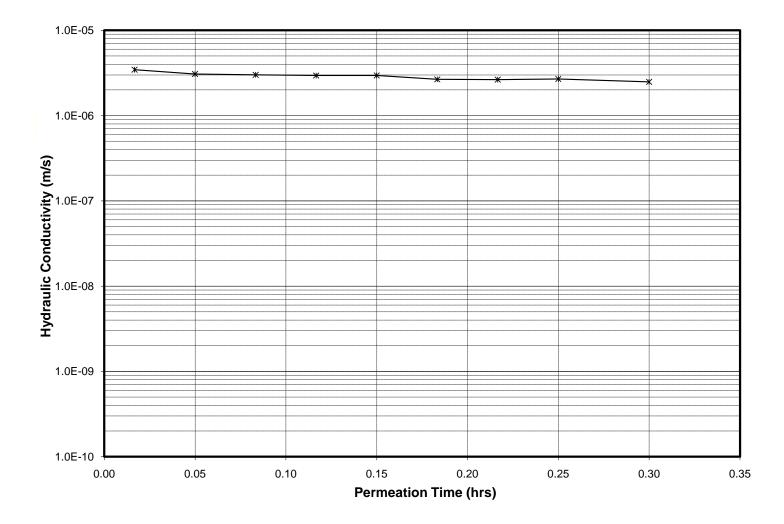
Job No.	21-1-21	199-002	
Tested By	AKV	On	1/29/2010
Comp By	AKV	On	2/3/2010
Checked By	JFL	On	2/5/2010

OTHER INFORMATION:

 h_1 = head loss across the specimen at time t_1 , m,

- h_2 = head loss across the specimen at time t_2 , m,
- k_{20} = corrected hydraulic conductivity at temperature of 20 °C
- R_T = correction factor for viscosity of water at various temperatures, T
 - $= 2.2902(0.9842^{T})/T^{0.1702}$

MEASURED DATA:


 $k = \frac{aL}{2At} ln(\frac{h_1}{h_2})$

R	ead Ti	me	Elapsed	Temp	Press	ure Re	adings			Burette	e Readin	igs		Head Loss	Effective	Stresses		Calculated Fl	ow Volumes		Gradient	K	RT	k ₂₀
			Time	Т	P _{cell}	Pin	Pout	V _{cell}	V _{in}	V _{out}	H _{cell}	H _{in}	H _{out}	h	σ'_{max}	σ'_{min}	Inflow	Outflow	Storage	Cum.	(i)			
day	hr	min	(hr)	(°C)	(psi)	(psi)	(psi)	(ml)	(ml)	(ml)	(m)	(m)	(m)	(m)	(psi)	(psi)	(ml)	(ml)	(ml)	P.V.		(m/sec)		(m/sec)
1	0	0	0.00	22.4	49.7	41.5	40.5	0.0	100.0	1.0	0.000	0.470	0.005	1.113	9.1	7.5				0	20.0			
1	0	1	0.02	22.4	49.7	41.5	40.5	0.0	91.5	9.5	0.000	0.430	0.045	1.034	9.1	7.6	8.5	8.5	0.0	0.1474	18.6	3.7E-06	0.944	3.5E-06
1	0	3	0.05	22.4	49.7	41.5	40.5	0.0	77.8	23.1	0.000	0.366	0.109	0.905	9.0	7.7	13.7	13.6	0.1	0.3842	16.3	3.3E-06	0.944	3.1E-06
1	0	5	0.08	22.4	49.7	41.5	40.5	0.0	66.1	34.8	0.000	0.311	0.164	0.795	8.9	7.8	11.7	11.7	0.0	0.5871	14.3	3.2E-06	0.944	3.0E-06
1	0	7	0.12	22.4	49.7	41.5	40.5	0.0	56.0	44.9	0.000	0.263	0.211	0.700	8.8	7.8	10.1	10.1	0.0	0.7623	12.6	3.1E-06	0.944	2.9E-06
1	0	9	0.15	22.4	49.7	41.5	40.5	0.0	47.1	53.8	0.000	0.221	0.253	0.617	8.8	7.9	8.9	8.9	0.0	0.9167	11.1	3.1E-06	0.944	3.0E-06
1	0	11	0.18	22.4	49.7	41.5	40.5	0.0	40.0	60.9	0.000	0.188	0.286	0.550	8.7	7.9	7.1	7.1	0.0	1.0398	9.9	2.8E-06	0.944	2.7E-06
1	0	13	0.22	22.4	49.7	41.5	40.5	0.0	33.7	67.2	0.000	0.158	0.316	0.491	8.7	8.0	6.3	6.3	0.0	1.1491	8.8	2.8E-06	0.944	2.6E-06
1	0	15	0.25	22.4	49.7	41.5	40.5	0.0	28.0	72.9	0.000	0.132	0.343	0.437	8.6	8.0	5.7	5.7	0.0	1.2480	7.9	2.8E-06	0.944	2.7E-06
1	0	18	0.30	22.4	49.7	41.5	40.5	0.0	21.1	79.8	0.000	0.099	0.375	0.372	8.6	8.1	6.9	6.9	0.0	1.3677	6.7	2.6E-06	0.944	2.5E-06
																							1	
																						Average for	or last 4:	2.6E-06

Project	Skagit River Levees
Boring No.	DD3-1 Levee
Sample No.	S-7
Depth (ft)	18.1

Job No.	21-1-21199-002		
Tested by	AKV	On	1/29/2010
Comp by	AKV	On	2/3/2010
Checked by	JFL	On	2/5/2010

SHANNON & WILSON, INC.
GEOTECHNICAL AND ENVIRONMENTAL CONSULTANTS
the standard is the standard strength of the standard strength is a standard strength of the standard strength strength of the standard strength of the standard strength of the standard strength of the standard strength strength ot standard strength strength strength ot standard strength strength ot strength strength strength strength strength

400 NORTH 34TH STREET + SUITE 100 P.O. BOX 300303 + SEATTLE, WASHINGTON 98103 206-632-8020 FAX 206-695-6777

Project	Skagit River Levees
Boring No.	DD3-1 Levee
Sample No.	D-15
Depth (ft)	56.1

WATER C	ONTENT DAT	A:	SF
	Before Test	After Test	
Pan No.	tin cup	Z-24	
Wet+Tare	138.57	378.11	
Dry+Tare	115.80	325.39	
Tare	2.96	103.22	
WC, %	20.2	23.7	
DESCRIPT	1		
Gray, fine t			
of silt; SP			E

SPECIMEN DATA:			
	Before Test	After Consol.	After Test
Height, m	0.0686	0.0684	0.0682
Diameter, m	0.0501	0.0501	0.0501
Wet Weight, g	276.06	274.06	274.89
Volume, ml	135.1	134.7	134.3
Area, m ²	0.00197	0.00197	0.00197
Wet Unit Wt, pcf	127.5	127.0	127.7
Dry Unit Wt, pcf	106.1	102.6	103.2
Est. Saturation,%	92.7	99.8	101.4

FALLING-HEAD INCREASING TAILWATER LEVEL HYDRAULIC CONDUCTIVITY CALCULATION (METHOD C):

a = cross-sectional area of standpipe, m²

L = length of the sample, m

A = cross-sectional area of the sample, m^2

t = elapsed time between determination of h_1 and h_2 , sec.

Job No.	21-1-21	199-002	
Tested By	AKV	On	1/22/2010
Comp By	AKV	On	1/29/2010
Checked By	JFL	On	2/5/2010

OTHER INFORMATION:

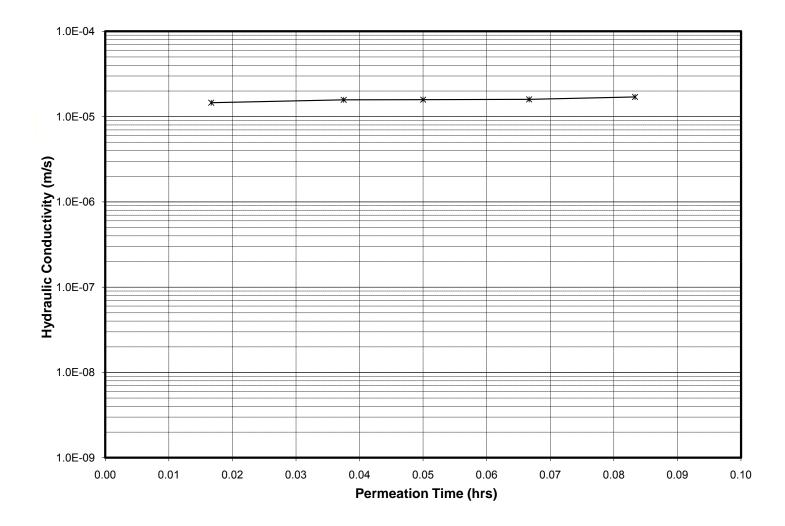
a = <u>2.13E-04</u>	•	Π			0.7
Specific Gravity	Assumed	Meas	sured	=	2.7
B-Coefficient =	0.95		NOTE:		
Volume of Solid =	85.1	ml			
Pore Volume (P.V.)=	50.0	ml			
		-			

 h_1 = head loss across the specimen at time t_1 , m,

- h_2 = head loss across the specimen at time t_2 , m,
- k₂₀ = corrected hydraulic conductivity at temperature of 20 °C
- R_T = correction factor for viscosity of water at various temperatures, T
- $= 2.2902(0.9842^{T})/T^{0.1702}$

MEASURED DATA:

 $k = \frac{aL}{2At} ln(\frac{h_1}{h_2})$


 $k_{20} = R_T k$

Re	ad Ti	me	Elapsed	Temp	Pressu	ure Re	adings			Burette	e Readir	ngs		Head Loss	Effective	Stresses		Calculated Fl	ow Volumes		Gradient	K	R _T	k ₂₀
			Time	Т	P _{cell}		Pout	V_{cell}	V _{in}	Vout	H _{cell}	H _{in}	H _{out}	h	σ' _{max}	σ' _{min}	Inflow	Outflow	Storage	Cum.	(i)			
day	hr	min	(hr)	(°C)	(psi)	(psi)	(psi)	(ml)	(ml)	(ml)	(m)	(m)	(m)	(m)	(psi)	(psi)	(ml)	(ml)	(ml)	P.V.		(m/sec)		(m/sec)
1	0	0	0.00	22.3	65.0	41.5	40.5	0.0	98.3	2.0	0.000	0.462	0.009	1.088	24.4	22.8				0	15.9			
1	0	1	0.02	22.3	65.0	41.5	40.5	0.0	72.8	27.5	0.000	0.342	0.129	0.848	24.2	23.0	25.5	25.5	0.0	0.5100	12.4	1.5E-05	0.947	1.5E-05
1	0	2.3	0.04	22.3	65.0	41.5	40.5	0.0	47.0	53.2	0.000	0.221	0.250	0.606	24.0	23.2	25.8	25.7	0.1	1.0251	8.8	1.7E-05	0.947	1.6E-05
1	0	3	0.05	22.3	65.0	41.5	40.5	0.0	35.1	64.9	0.000	0.165	0.305	0.495	24.0	23.3	11.9	11.7	0.2	1.2611	7.2	1.7E-05	0.947	1.6E-05
1	0	4	0.07	22.3	65.0	41.5	40.5	0.0	22.5	77.4	0.000	0.106	0.364	0.377	23.9	23.3	12.6	12.5	0.1	1.5121	5.5	1.7E-05	0.947	1.6E-05
1	0	5	0.08	22.3	65.0	41.5	40.5	0.0	12.4	87.5	0.000	0.058	0.411	0.282	23.8	23.4	10.1	10.1	0.0	1.7141	4.1	1.8E-05	0.947	1.7E-05
													•	•				•	•		•	Average for	or last 4:	1.6E-05

Project	Skagit River Levees
Boring No.	DD3-1 Levee
Sample No.	D-15
Depth (ft)	56.1

Job No.	21-1-21199-002		
Tested by	AKV	On	1/22/2010
Comp by	AKV	On	1/29/2010
Checked by	JFL	On	2/5/2010

_	8		.8
-	H		
-	ч	в	8

C

SHANNON & WILSON, INC.	1
GEOTECHNICAL AND ENVIRONMENTAL CONSULTANTS	
AND NORTH SATH STREET . SUITE 100	

400 NORTH 34TH STREET • SUITE 100 P.O. BOX 300303 • SEATTLE, WASHINGTON 98103 206-632-8020 FAX 206-695-6777

Project	Skagit River Levees
Boring No.	DD17-1 Landward
Sample No.	S-2/S-3
Depth (ft)	5.0/7.5

WATER	CONTENT DATA:

	Before Test	After Test		
Pan No.	tin cup	Z-24		Height, m
Wet+Tare	76.03	321.58		Diameter,
Dry+Tare	62.34	275.62		Wet Weigh
Tare	3.02	103.04		Volume, r
WC, %	23.1	26.6		Area, m ²
DESCRIPT	Wet Unit Wt			
Gray-browr	Dry Unit Wt,			

SPECIMEN DATA:				
	Before Test	After Consol.	After Test	
Height, m	0.0562	0.0558	0.0562	
Diameter, m	0.0507	0.0507	0.0507	
Wet Weight, g	211.96	211.86	218.54	
Volume, ml	113.5	112.7	113.5	
Area, m ²	0.00202	0.00202	0.00202	
Wet Unit Wt, pcf	116.5	117.3	120.1	
Dry Unit Wt, pcf	94.7	92.6	94.9	
Est. Saturation,%	79.9	87.8	92.7	

FALLING-HEAD INCREASING TAILWATER LEVEL HYDRAULIC CONDUCTIVITY CALCULATION (METHOD C):

a = cross-sectional area of standpipe, m²

L = length of the sample, m

A = cross-sectional area of the sample, m^2

t = elapsed time between determination of h_1 and h_2 , sec.

Job No.	21-1-21	199-002	
Tested By	AKV	On	1/26/2010
Comp By	AKV	On	2/3/2010
Checked By	JFL	On	2/8/2010

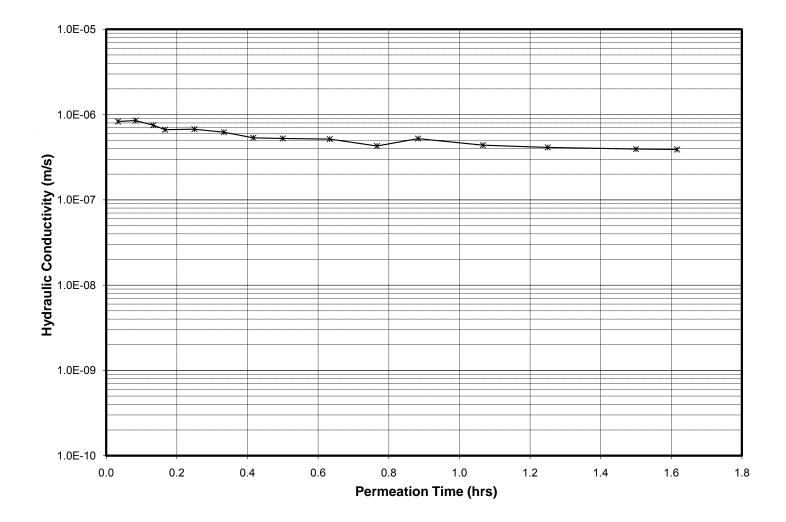
OTHER INFORMATION:

Burette Corr. Factor, BCI a = 2.13E-04		ight), 1ml :	=	0.0047	m		
Specific Gravity	Assumed	Meas	sured	=	2.7		
B-Coefficient =	0.96		NOTE:				
Volume of Solid =	63.8	ml	Sample co	omprised of			
Pore Volume (P.V.)=	49.7	ml	50% S-2,	50% S-3			

 h_1 = head loss across the specimen at time t_1 , m,

- h_2 = head loss across the specimen at time t_2 , m,
- k_{20} = corrected hydraulic conductivity at temperature of 20 °C
- R_T = correction factor for viscosity of water at various temperatures, T
 - = 2.2902(0.9842^T)/T^{0.1702}

MEASURED DATA:


 $k = \frac{aL}{2At} ln(\frac{h_1}{h_2})$

R	ead Ti	me	Elapsed	Temp	Press	ure Re	adings			Burette	e Readir	ngs		Head Loss	Effective	Stresses		Calculated FI	ow Volumes		Gradient	К	RT	k ₂₀
			Time	Т	P _{cell}	Pin	Pout	V _{cell}	V _{in}	V _{out}	H _{cell}	H _{in}	H _{out}	h	σ' _{max}	σ'_{min}	Inflow	Outflow	Storage	Cum.	(i)			
day	hr	min	(hr)	(°C)	(psi)	(psi)	(psi)	(ml)	(ml)	(ml)	(m)	(m)	(m)	(m)	(psi)	(psi)	(ml)	(ml)	(ml)	P.V.		(m/sec)		(m/sec)
1	0	0	0.00	22.4	80.7	76.5	75.5	0.0	98.7	0.1	0.000	0.464	0.000	1.111	5.1	3.5				0	19.8			
1	0	2	0.03	22.4	80.7	76.5	75.5	0.0	94.2	3.9	0.000	0.443	0.018	1.072	5.1	3.6	4.5	3.8	0.7	0.0835	19.1	8.8E-07	0.944	8.3E-07
1	0	5	0.08	22.4	80.7	76.5	75.5	0.0	88.1	10.0	0.000	0.414	0.047	1.015	5.1	3.6	6.1	6.1	0.0	0.2061	18.1	9.0E-07	0.944	8.5E-07
1	0	8	0.13	22.4	80.7	76.5	75.5	0.0	83.1	15.2	0.000	0.391	0.071	0.967	5.0	3.6	5.0	5.2	-0.2	0.3087	17.2	8.0E-07	0.944	7.5E-07
1	0	10	0.17	22.4	80.7	76.5	75.5	0.0	80.0	17.9	0.000	0.376	0.084	0.939	5.0	3.7	3.1	2.7	0.4	0.3670	16.7	7.1E-07	0.944	6.7E-07
1	0	15	0.25	22.4	80.7	76.5	75.5	0.0	73.1	25.0	0.000	0.344	0.118	0.874	5.0	3.7	6.9	7.1	-0.2	0.5078	15.6	7.2E-07	0.944	6.8E-07
1	0	20	0.33	22.4	80.7	76.5	75.5	0.0	67.1	31.0	0.000	0.315	0.146	0.817	4.9	3.8	6.0	6.0	0.0	0.6285	14.5	6.6E-07	0.944	6.2E-07
1	0	25	0.42	22.4	80.7	76.5	75.5	0.0	62.2	35.8	0.000	0.292	0.168	0.772	4.9	3.8	4.9	4.8	0.1	0.7260	13.7	5.7E-07	0.944	5.3E-07
1	0	30	0.50	22.4	80.7	76.5	75.5	0.0	57.7	40.3	0.000	0.271	0.189	0.729	4.9	3.8	4.5	4.5	0.0	0.8165	13.0	5.6E-07	0.944	5.3E-07
1	0	38	0.63	22.4	80.7	76.5	75.5	0.0	51.1	46.9	0.000	0.240	0.220	0.667	4.8	3.9	6.6	6.6	0.0	0.9492	11.9	5.5E-07	0.944	5.2E-07
1	0	46	0.77	22.4	80.7	76.5	75.5	0.0	46.1	52.0	0.000	0.217	0.244	0.620	4.8	3.9	5.0	5.1	-0.1	1.0508	11.0	4.6E-07	0.944	4.3E-07
1	0	53	0.88	22.4	80.7	76.5	75.5	0.0	41.1	57.0	0.000	0.193	0.268	0.573	4.7	3.9	5.0	5.0	0.0	1.1513	10.2	5.6E-07	0.944	5.2E-07
1	1	4	1.07	22.4	80.7	76.5	75.5	0.0	35.1	63.0	0.000	0.165	0.296	0.516	4.7	4.0	6.0	6.0	0.0	1.2720	9.2	4.7E-07	0.944	4.4E-07
1	1	15	1.25	22.4	80.7	76.5	75.5	0.0	30.0	68.1	0.000	0.141	0.320	0.469	4.7	4.0	5.1	5.1	0.0	1.3746	8.3	4.4E-07	0.944	4.1E-07
1	1	30	1.50	22.4	80.7	76.5	75.5	0.0	24.0	74.0	0.000	0.113	0.348	0.413	4.6	4.0	6.0	5.9	0.1	1.4942	7.3	4.2E-07	0.944	3.9E-07
1	1	37	1.62	22.4	80.7	76.5	75.5	0.0	21.5	76.5	0.000	0.101	0.360	0.389	4.6	4.1	2.5	2.5	0.0	1.5445	6.9	4.1E-07	0.944	3.9E-07
																						Average for	or last 4:	4.1E-07

Project	Skagit River Levees
Boring No.	DD17-1 Landward
Sample No.	S-2/S-3
Depth (ft)	5.0/7.5

Job No.	21-1-21199-002		
Tested by	AKV	On	1/26/2010
Comp by	AKV	On	2/3/2010
Checked by	JFL	On	2/8/2010

	8		
-	ų	8	9

SHANNON & WILSON, INC.

400 NORTH 34TH STREET + SUITE 100 P.O. BOX 300303 + SEATTLE, WASHINGTON 98103 206-632-8020 FAX 206-695-6777

Project	Skagit River Levees
Boring No.	DD17-1 Levee
Sample No.	S-5/S-6
Depth (ft)	12.5/15.0

WATER	CONTENT DATA:	
-------	---------------	--

	Before Test	After Test	
Pan No.	tin cup	Z-24	
Wet+Tare	89.48	323.70	
Dry+Tare	76.29	269.44	
Tare	3.08	102.68	
WC, %	18.0	32.5	
DESCRIPT	ION:		
Gray-brown	n, silty, fine SAI	ND; SM	

SPECIMEN DATA:

	Before Test	After Consol.	After Test		
Height, m	0.0595	0.0593	0.0592		
Diameter, m	0.0507	0.0507	0.0507		
Wet Weight, g	197.55	196.85	221.02		
Volume, ml	120.0	119.6	119.5		
Area, m ²	0.00202	0.00202	0.00202		
Wet Unit Wt, pcf	102.8	102.7	115.4		
Dry Unit Wt, pcf	87.1	77.5	87.1		
Est. Saturation,%	52.0	74.9	94.0		

FALLING-HEAD INCREASING TAILWATER LEVEL HYDRAULIC CONDUCTIVITY CALCULATION (METHOD C):

a = cross-sectional area of standpipe, m²

L = length of the sample, m

A = cross-sectional area of the sample, m^2

t = elapsed time between determination of h_1 and h_2 , sec.

Job No.	21-1-21	199-002	
Tested By	AKV	On	1/29/2010
Comp By	AKV	On	2/5/2010
Checked By	JFL	On	2/8/2010

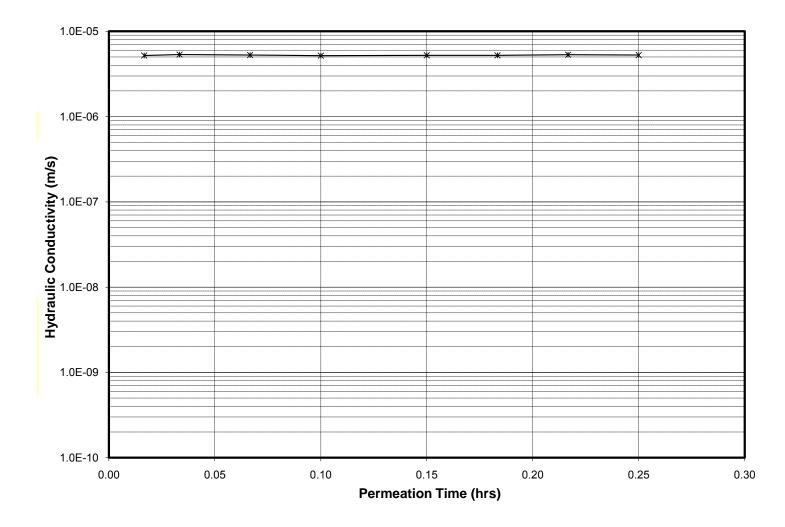
OTHER INFORMATION:

Burette Corr. Factor, BCF (vol. to height), 1ml = 0.0047 m 2.13E-04 m² a = Assumed Measured Specific Gravity = 2.7 NOTE: B-Coefficient = 0.97 Volume of Solid = 62.0 Sample comprised of ml 50% S-5, 50% S-6 Pore Volume (P.V.)= 58.0 ml

 h_1 = head loss across the specimen at time t_1 , m,

- h_2 = head loss across the specimen at time t_2 , m,
- k_{20} = corrected hydraulic conductivity at temperature of 20 °C
- R_T = correction factor for viscosity of water at various temperatures, T = 2.2902(0.9842^T)/T^{0.1702}

MEASURED DATA:


 $k = \frac{aL}{2At} ln(\frac{h_1}{h_2})$

R	ead Ti	me	Elapsed	Temp	Pressu	ure Rea	adings			Burette	e Readir	igs		Head Loss	Effective	Stresses		Calculated Fl	ow Volumes		Gradient	K	RT	k ₂₀
			Time	Т	P _{cell}	Pin	P _{out}	V _{cell}	V _{in}	V _{out}	H _{cell}	H _{in}	H _{out}	h	σ'_{max}	σ' _{min}	Inflow	Outflow	Storage	Cum.	(i)			
day	hr	min	(hr)	(°C)	(psi)		(psi)	(ml)	(ml)	(ml)	(m)	(m)	(m)	(m)	(psi)	(psi)	(ml)	(ml)	(ml)	P.V.		(m/sec)		(m/sec)
1	0	0	0.00	22.0	101.2	91.5	90.5	0.0	95.5	1.0	0.000	0.449	0.005	1.088	10.6	9.1				0	18.3			
1	0	1	0.02	22.0	101.2	91.5	90.5	0.0	83.8	12.3	0.000	0.394	0.058	0.980	10.5	9.1	11.7	11.3	0.4	0.1984	16.5	5.5E-06	0.953	5.2E-06
1	0	2	0.03	22.0	101.2	91.5	90.5	0.0	73.1	22.8	0.000	0.344	0.107	0.881	10.5	9.2	10.7	10.5	0.2	0.3812	14.8	5.6E-06	0.953	5.3E-06
1	0	4	0.07	22.0	101.2	91.5	90.5	0.0	55.2	40.7	0.000	0.259	0.191	0.712	10.3	9.3	17.9	17.9	0.0	0.6900	12.0	5.5E-06	0.953	5.3E-06
1	0	6	0.10	22.0	101.2	91.5	90.5	0.0	41.0	55.0	0.000	0.193	0.259	0.579	10.2	9.4	14.2	14.3	-0.1	0.9358	9.7	5.4E-06	0.953	5.2E-06
1	0	9	0.15	22.0	101.2	91.5	90.5	0.0	24.4	71.7	0.000	0.115	0.337	0.422	10.1	9.5	16.6	16.7	-0.1	1.2230	7.1	5.5E-06	0.953	5.2E-06
1	0	11	0.18	22.0	101.2	91.5	90.5	0.0	15.9	80.2	0.000	0.075	0.377	0.342	10.1	9.6	8.5	8.5	0.0	1.3697	5.8	5.5E-06	0.953	5.2E-06
1	0	13	0.22	22.0	101.2	91.5	90.5	0.0	8.9	87.2	0.000	0.042	0.410	0.276	10.0	9.6	7.0	7.0	0.0	1.4904	4.6	5.6E-06	0.953	5.3E-06
1	0	15	0.25	22.0	101.2	91.5	90.5	0.0	3.3	92.8	0.000	0.016	0.436	0.224	10.0	9.7	5.6	5.6	0.0	1.5870	3.8	5.5E-06	0.953	5.3E-06
																							I	
		•		•		•								•			•	•	•		•	Average for	or last 4:	5.3E-06

Project	Skagit River Levees
Boring No.	DD17-1 Levee
Sample No.	S-5/S-6
Depth (ft)	12.5/15.0

Job No.	21-1-21199-002		
Tested by	AKV	On	1/29/2010
Comp by	AKV	On	2/5/2010
Checked by	JFL	On	2/8/2010

SHANNON & WILSON, INC.
GEOTECHNICAL AND ENVIRONMENTAL CONSULTANTS
400 NORTH 34TH STREET + SHITE 100

400 NORTH 34TH STREET - SUITE 100 P.O. BOX 300303 - SEATTLE, WASHINGTON 98103 206-632-8020 FAX 206-695-6777

Project	Skagit River Levees
Boring No.	DD17-2 Landward
Sample No.	S-3
Depth (ft)	7.5

After Test 0.0543 0.0510 228.39 111.0 0.00204 128.4 105.8 97.6

WATER C	ONTENT DAT	A:	_	SPECIMEN DATA:		
	Before Test	After Test			Before Test	After Consol.
Pan No.	tin cup	Z-24		Height, m	0.0544	0.0544
Wet+Tare	133.34	326.54		Diameter, m	0.0510	0.0510
Dry+Tare	110.37	286.24		Wet Weight, g	228.73	227.93
Tare	2.95	98.15		Volume, ml	111.1	111.0
WC, %	21.4	21.4		Area, m ²	0.00204	0.00204
DESCRIPT	TION:		-	Wet Unit Wt, pcf	128.5	128.1
Gray-brown	n, fine sandy S	ILT;		Dry Unit Wt, pcf	105.9	105.5
scattered o	organics; ML			Est. Saturation,%	97.6	96.9

FALLING-HEAD INCREASING TAILWATER LEVEL HYDRAULIC CONDUCTIVITY CALCULATION (METHOD C): a = cross-sectional area of standpipe, m²

 $k = \frac{aL}{2At} ln(\frac{h_1}{h_2})$

L = length of the sample, m

A = cross-sectional area of the sample, m^2

t = elapsed time between determination of h_1 and h_2 , sec.

Job No.	21-1-21	199-002	
Tested By	AKV	On	1/18/2010
Comp By	AKV	On	1/29/2010
Checked By	JFL	On	2/8/2010

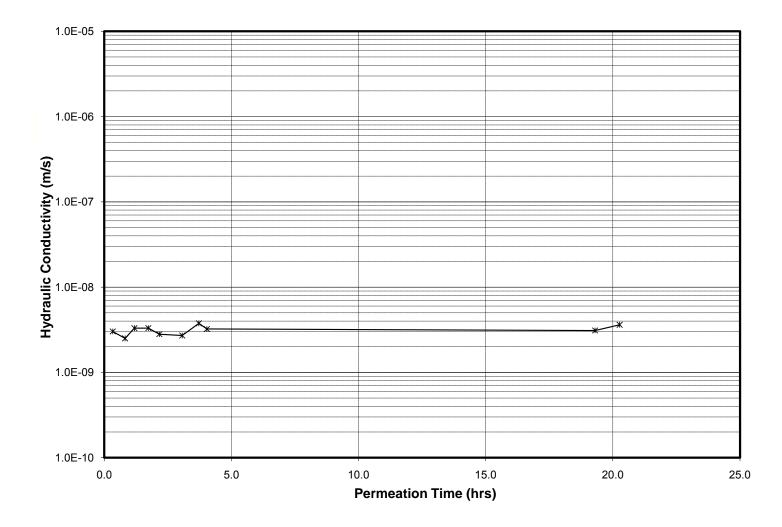
OTHER INFORMATION:

Burette Corr. Factor, BC a = 2.13E-04		eight), 1ml	=	0.0047	m
Specific Gravity	Assumed	Meas	sured	=	2.7
B-Coefficient =	0.98		NOTE:		
Volume of Solid =	69.8	ml			
Pore Volume (P.V.)=	41.3	ml			

 h_1 = head loss across the specimen at time t_1 , m,

- h_2 = head loss across the specimen at time t_2 , m,
- k₂₀ = corrected hydraulic conductivity at temperature of 20 °C
- R_T = correction factor for viscosity of water at various temperatures, T

= 2.2902(0.9842^T)/T^{0.1702}


MEASURED DATA:

Re	ead Tir	ne	Elapsed	Temp	Press	ure Re	adings			Burett	e Readir	ngs		Head Loss	Loss Effective Stresses Calculated Flow Volumes Gradient K			RT	k ₂₀					
			Time	Т	P _{cell}	Pin	Pout	V _{cell}	V _{in}	V _{out}	H _{cell}	H _{in}	H _{out}	h	σ' _{max}	σ' _{min}	Inflow	Outflow	Storage	Cum.	(i)			
day	hr	min	(hr)	(°C)	(psi)	(psi)	(psi)	(ml)	(ml)	(ml)	(m)	(m)	(m)	(m)	(psi)	(psi)	(ml)	(ml)	(ml)	P.V.		(m/sec)		(m/sec)
1	0	0	0.00	23.4	35.7	32.0	30.0	0.0	77.2	5.0	0.000	0.363	0.024	1.692	5.6	3.2				0	31.1			
1	0	20	0.33	23.5	35.7	32.0	30.0	0.0	76.9	5.2	0.000	0.361	0.024	1.690	5.6	3.2	0.3	0.2	0.1	0.0061	31.1	3.3E-09	0.921	3.0E-09
1	0	49	0.82	23.5	35.7	32.0	30.0	0.0	76.5	5.4	0.000	0.360	0.025	1.687	5.6	3.2	0.4	0.2	0.2	0.0133	31.0	2.7E-09	0.920	2.5E-09
1	1	11	1.18	23.5	35.7	32.0	30.0	0.0	76.2	5.7	0.000	0.358	0.027	1.684	5.6	3.2	0.3	0.3	0.0	0.0206	31.0	3.6E-09	0.920	3.3E-09
1	1	44	1.73	23.5	35.7	32.0	30.0	0.0	75.7	6.1	0.000	0.356	0.029	1.680	5.6	3.2	0.5	0.4	0.1	0.0315	30.9	3.6E-09	0.920	3.3E-09
1	2	10	2.17	23.5	35.7	32.0	30.0	0.0	75.4	6.4	0.000	0.354	0.030	1.677	5.6	3.2	0.3	0.3	0.0	0.0388	30.8	3.1E-09	0.920	2.8E-09
1	3	4	3.07	23.5	35.7	32.0	30.0	0.0	74.8	7.0	0.000	0.352	0.033	1.672	5.6	3.2	0.6	0.6	0.0	0.0533	30.7	2.9E-09	0.920	2.7E-09
1	3	43	3.72	23.5	35.7	32.0	30.0	0.0	74.2	7.6	0.000	0.349	0.036	1.666	5.6	3.2	0.6	0.6	0.0	0.0678	30.6	4.1E-09	0.920	3.8E-09
1	4	2	4.03	23.5	35.7	32.0	30.0	0.0	74.0	7.9	0.000	0.348	0.037	1.664	5.6	3.2	0.2	0.3	-0.1	0.0739	30.6	3.5E-09	0.920	3.2E-09
1	19	18	19.30	23.5	35.7	32.0	30.0	0.0	62.8	19.1	0.000	0.295	0.090	1.559	5.5	3.3	11.2	11.2	0.0	0.3452	28.7	3.4E-09	0.920	3.1E-09
1	20	16	20.27	23.5	35.7	32.0	30.0	0.0	62.0	19.9	0.000	0.291	0.094	1.551	5.5	3.3	0.8	0.8	0.0	0.3645	28.5	3.9E-09	0.920	3.6E-09
																						Average for	or last 4:	3.4E-09

Project	Skagit River Levees
Boring No.	DD17-2 Landward
Sample No.	S-3
Depth (ft)	7.5

Job No.	21-1-21199-002		
Tested by	AKV	On	1/18/2010
Comp by	AKV	On	1/29/2010
Checked by	JFL	On	2/8/2010

		8
-	ч	y

SHANNON & WILSON, IN	JC.
GEOTECHNICAL AND ENVIRONMENTAL CONSUL	
AND NORTH SATH STREET . SUNTE 100	

400 NORTH 34TH STREET • SUITE 100 P.O. BOX 300303 • SEATTLE, WASHINGTON 98103-206-632-8020 FAX 206-695-6777

Project	Skagit River Levees
Boring No.	DD17-2 Levee
Sample No.	S-10
Depth (ft)	24.5

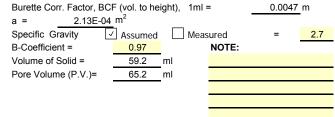
WATER CO		SPECI					
	Before Test	After Test					
Pan No.	tin cup	Z-24		He			
Wet+Tare	154.11	324.00		Dia			
Dry+Tare	111.45	258.82		Wet			
Tare	2.95	103.48		Vo			
WC, %	39.3	42.0		A			
DESCRIPT	DESCRIPTION:						
Gray, fine s	Gray, fine sandy SILT; oxide						
staining; M	staining; ML						

SPECIMEN DATA:

	OI LOIMEN DATA.			
t		Before Test	After Consol.	After Test
	Height, m	0.0605	0.0585	0.0585
	Diameter, m	0.0512	0.0512	0.0512
	Wet Weight, g	222.64	217.64	220.52
	Volume, ml	124.4	120.2	120.2
	Area, m ²	0.00206	0.00206	0.00206
	Wet Unit Wt, pcf	111.7	113.0	114.5
	Dry Unit Wt, pcf	80.2	79.6	80.6
	Est. Saturation,%	96.4	101.4	104.0

FALLING-HEAD INCREASING TAILWATER LEVEL HYDRAULIC CONDUCTIVITY CALCULATION (METHOD C):

a = cross-sectional area of standpipe, m²


L = length of the sample, m

A = cross-sectional area of the sample, m^2

t = elapsed time between determination of h_1 and h_2 , sec.

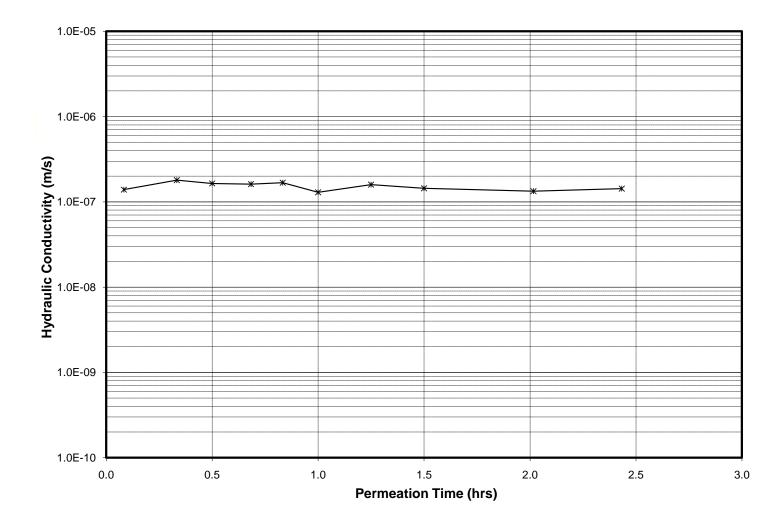
Job No.	21-1-21	199-002	
Tested By	AKV	On	1/20/2010
Comp By	AKV	On	2/2/2010
Checked By	JFL	On	2/7/2010

OTHER INFORMATION:

 h_1 = head loss across the specimen at time t_1 , m,

- h_2 = head loss across the specimen at time t_2 , m,
- k₂₀ = corrected hydraulic conductivity at temperature of 20 °C
- R_T = correction factor for viscosity of water at various temperatures, T
 - = 2.2902(0.9842^T)/T^{0.1702}

MEASURED DATA:


R	ead Ti	me	Elapsed	Temp	Press	ure Re	adings			Burett	e Readir	ngs		Head Loss	Effective	Stresses		Calculated FI	ow Volumes		Gradient	K	RT	k ₂₀
			Time	Т	P _{cell}	P _{in}	Pout	V _{cell}	V _{in}	V _{out}	H _{cell}	H _{in}	H _{out}	h	σ' _{max}	σ'_{min}	Inflow	Outflow	Storage	Cum.	(i)			
day	hr	min	(hr)	(°C)	(psi)	(psi)	(psi)	(ml)	(ml)	(ml)	(m)	(m)	(m)	(m)	(psi)	(psi)	(ml)	(ml)	(ml)	P.V.		(m/sec)		(m/sec)
1	0	0	0.00	22.4	44.0	31.5	30.5	0.0	98.2	7.0	0.000	0.462	0.033	1.072	13.4	11.8				0	17.7			
1	0	5	0.08	22.4	44.0	31.5	30.5	0.0	96.1	8.1	0.000	0.452	0.038	1.057	13.4	11.9	2.1	1.1	1.0	0.0245	17.5	1.5E-07	0.944	1.4E-07
1	0	20	0.33	22.4	44.0	31.5	30.5	0.0	90.5	14.5	0.000	0.425	0.068	1.000	13.3	11.9	5.6	6.4	-0.8	0.1166	16.5	1.9E-07	0.944	1.8E-07
1	0	30	0.50	22.4	44.0	31.5	30.5	0.0	86.9	17.9	0.000	0.408	0.084	0.968	13.3	11.9	3.6	3.4	0.2	0.1703	16.0	1.7E-07	0.944	1.6E-07
1	0	41	0.68	22.4	44.0	31.5	30.5	0.0	83.2	21.5	0.000	0.391	0.101	0.933	13.3	11.9	3.7	3.6	0.1	0.2263	15.4	1.7E-07	0.944	1.6E-07
1	0	50	0.83	22.4	44.0	31.5	30.5	0.0	80.2	24.5	0.000	0.377	0.115	0.905	13.3	12.0	3.0	3.0	0.0	0.2723	15.0	1.8E-07	0.944	1.7E-07
1	1	0	1.00	22.4	44.0	31.5	30.5	0.0	77.7	27.0	0.000	0.365	0.127	0.882	13.2	12.0	2.5	2.5	0.0	0.3107	14.6	1.4E-07	0.944	1.3E-07
1	1	15	1.25	22.4	44.0	31.5	30.5	0.0	73.3	31.5	0.000	0.345	0.148	0.840	13.2	12.0	4.4	4.5	-0.1	0.3790	13.9	1.7E-07	0.944	1.6E-07
1	1	30	1.50	22.4	44.0	31.5	30.5	0.0	69.5	35.4	0.000	0.327	0.166	0.804	13.2	12.0	3.8	3.9	-0.1	0.4381	13.3	1.5E-07	0.944	1.4E-07
1	2	1	2.02	22.4	44.0	31.5	30.5	0.0	62.6	42.3	0.000	0.294	0.199	0.739	13.1	12.1	6.9	6.9	0.0	0.5439	12.2	1.4E-07	0.944	1.3E-07
1	2	26	2.43	22.4	44.0	31.5	30.5	0.0	57.0	47.7	0.000	0.268	0.224	0.687	13.1	12.1	5.6	5.4	0.2	0.6283	11.4	1.5E-07	0.944	1.4E-07
		-		-	-		-							-				-	-		-	Average for	or last 4:	1.5E-07

 $k = \frac{aL}{2At} ln(\frac{h_1}{h_2})$

Project	Skagit River Levees
Boring No.	DD17-2 Levee
Sample No.	S-10
Depth (ft)	24.5

Job No.	21-1-21199-002		
Tested by	AKV	On	1/20/2010
Comp by	AKV	On	2/2/2010
Checked by	JFL	On	2/7/2010

-	ч		y
		_	~

SHANN	ON&	WILSO	DN, INC.
GEOTECHNICAL			

400 NORTH 34TH STREET + SUITE 100 P.O. BOX 300303 • SEATTLE, WASHINGTON 98103 206-632-8020 FAX 206-695-6777

Project	Skagit River Levees
Boring No.	DD17-3 Landward
Sample No.	S-2
Depth (ft)	5.9

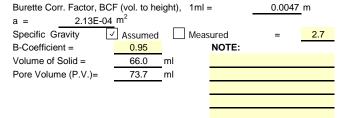
WATER CO							
	Before Test	After Test					
Pan No.	tin cup	Z-24					
Wet+Tare	103.87	410.66					
Dry+Tare	86.70	342.93					
Tare	3.11	164.02					
WC, %	20.5	37.9					
DESCRIPTION:							
Gray-brown, slightly silty, fine							
SAND; SP-	SM						

SPECIMEN DATA:

_	SFECIMIEN DATA.			
		Before Test	After Consol.	After Test
	Height, m	0.0675	0.0674	0.0674
	Diameter, m	0.0513	0.0513	0.0513
	Wet Weight, g	214.79	214.39	246.64
	Volume, ml	139.7	139.7	139.6
	Area, m ²	0.00207	0.00207	0.00207
_	Wet Unit Wt, pcf	95.9	95.8	110.2
	Dry Unit Wt, pcf	79.6	69.5	79.9
	Est. Saturation,%	49.7	71.7	92.3
_				

FALLING-HEAD INCREASING TAILWATER LEVEL HYDRAULIC CONDUCTIVITY CALCULATION (METHOD C):

a = cross-sectional area of standpipe, m²


L = length of the sample, m

A = cross-sectional area of the sample, m²

t = elapsed time between determination of h_1 and h_2 , sec.

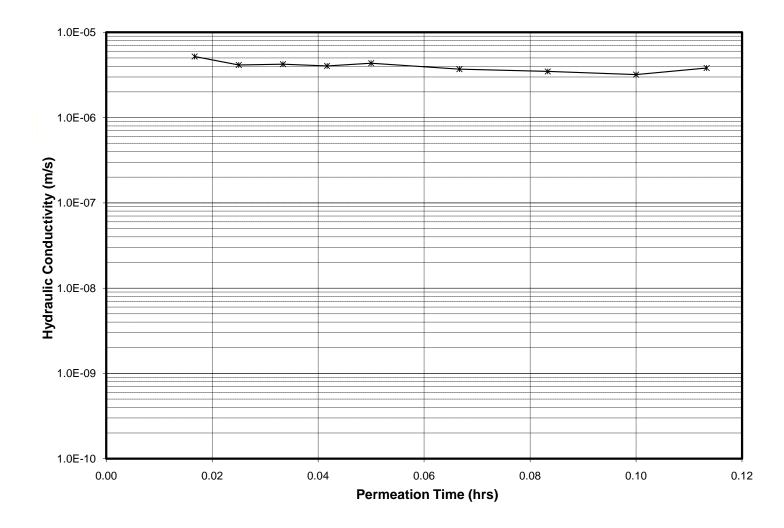
Job No.	21-1-21	199-002	
Tested By	AKV	On	1/20/2010
Comp By	AKV	On	2/2/2010
Checked By	JFL	On	2/8/2010

OTHER INFORMATION:

 h_1 = head loss across the specimen at time t_1 , m,

- h_2 = head loss across the specimen at time t_2 , m,
- k_{20} = corrected hydraulic conductivity at temperature of 20 °C
- R_T = correction factor for viscosity of water at various temperatures, T
 - $= 2.2902(0.9842^{T})/T^{0.1702}$

MEASURED DATA:


 $k = \frac{aL}{2At} ln(\frac{h_1}{h_2})$

Re	ead Tir	ne	Elapsed	Temp	Press	ure Re	adings		Burette Readings				Head Loss	Head Loss Effective Stresses Calculated Flow Volumes						Gradient	K	RT	k ₂₀	
			Time	Т	P _{cell}	P _{in}	Pout	V _{cell}	V _{in}	V _{out}	H _{cell}	H _{in}	H _{out}	h	σ'_{max}	σ'_{min}	Inflow	Outflow	Storage	Cum.	(i)			
day	hr	min	(hr)	(°C)	(psi)	(psi)	(psi)	(ml)	(ml)	(ml)	(m)	(m)	(m)	(m)	(psi)	(psi)	(ml)	(ml)	(ml)	P.V.		(m/sec)		(m/sec)
1	0	0	0.00	22.6	49.4	47.0	45.0	0.0	79.0	5.0	0.000	0.371	0.024	1.688	4.3	1.9				0	25.0			
1	0	1	0.02	22.6	49.4	47.0	45.0	0.0	62.1	20.9	0.000	0.292	0.098	1.534	4.2	2.0	16.9	15.9	1.0	0.2225	22.7	5.5E-06	0.94	5.2E-06
1	0	1.5	0.03	22.6	49.4	47.0	45.0	0.0	56.0	27.0	0.000	0.263	0.127	1.476	4.1	2.0	6.1	6.1	0.0	0.3053	21.9	4.4E-06	0.94	4.1E-06
1	0	2	0.03	22.6	49.4	47.0	45.0	0.0	49.9	32.9	0.000	0.235	0.155	1.420	4.1	2.1	6.1	5.9	0.2	0.3867	21.0	4.5E-06	0.94	4.2E-06
1	0	2.5	0.04	22.6	49.4	47.0	45.0	0.0	44.5	38.5	0.000	0.209	0.181	1.368	4.0	2.1	5.4	5.6	-0.2	0.4614	20.3	4.3E-06	0.94	4.0E-06
1	0	3	0.05	22.6	49.4	47.0	45.0	0.0	38.3	43.7	0.000	0.180	0.205	1.315	4.0	2.1	6.2	5.2	1.0	0.5387	19.5	4.6E-06	0.94	4.3E-06
1	0	4	0.07	22.6	49.4	47.0	45.0	0.0	29.1	52.9	0.000	0.137	0.249	1.228	4.0	2.2	9.2	9.2	0.0	0.6635	18.2	3.9E-06	0.94	3.7E-06
1	0	5	0.08	22.6	49.4	47.0	45.0	0.0	21.0	61.0	0.000	0.099	0.287	1.152	3.9	2.3	8.1	8.1	0.0	0.7735	17.1	3.7E-06	0.94	3.5E-06
1	0	6	0.10	22.6	49.4	47.0	45.0	0.0	14.0	68.0	0.000	0.066	0.320	1.086	3.9	2.3	7.0	7.0	0.0	0.8684	16.1	3.4E-06	0.94	3.2E-06
1	0	6.8	0.11	22.6	49.4	47.0	45.0	0.0	7.7	74.3	0.000	0.036	0.349	1.027	3.8	2.3	6.3	6.3	0.0	0.9539	15.2	4.1E-06	0.94	3.8E-06
																						Average for	or last 4:	3.5E-06

Project	Skagit River Levees
Boring No.	DD17-3 Landward
Sample No.	S-2
Depth (ft)	5.9

Job No.	21-1-21199-002		
Tested by	AKV	On	1/20/2010
Comp by	AKV	On	2/2/2010
Checked by	JFL	On	2/8/2010

SHANNON & WILSON, INC.
GEOTECHNICAL AND ENVIRONMENTAL CONSULTANTS
400 MODELL DATH PEOPLET - DINEE 100

400 NORTH 34TH STREET + SUITE 100 P.O. BOX 300303 + SEATTLE, WASHINGTON 98103 206-632-8020 FAX 206-695-6777

Project	Skagit River Levees
Boring No.	DD17-3 Levee
Sample No.	S-5/S-6
Depth (ft)	12.5/15.0

	Before Test	After Test					
Pan No.	tin cup	Z-24					
Wet+Tare	67.85	315.32					
Dry+Tare	57.77	265.74					
Tare	3.15	87.86					
WC, %	18.5	27.9					
DESCRIPTION:							
Gray-browr	n, silty, fine SA	ND; SM					

SPECIMEN DATA:									
	Before Test	After Consol.	After Test						
Height, m	0.0555	0.0552	0.0553						
Diameter, m	0.0508	0.0508	0.0508						
Wet Weight, g	199.22	198.42	227.46						
Volume, ml	112.3	111.8	111.8						
Area, m ²	0.00202	0.00202	0.00202						
Wet Unit Wt, pcf	110.7	110.8	126.9						
Dry Unit Wt, pcf	93.5	86.6	99.3						
Est. Saturation,%	62.1	79.7	108.0						

FALLING-HEAD INCREASING TAILWATER LEVEL HYDRAULIC CONDUCTIVITY CALCULATION (METHOD C):

a = cross-sectional area of standpipe, m² $k = \frac{aL}{2At} ln(\frac{h_1}{h_2})$

L = length of the sample, m

A = cross-sectional area of the sample, m^2

t = elapsed time between determination of h_1 and h_2 , sec.

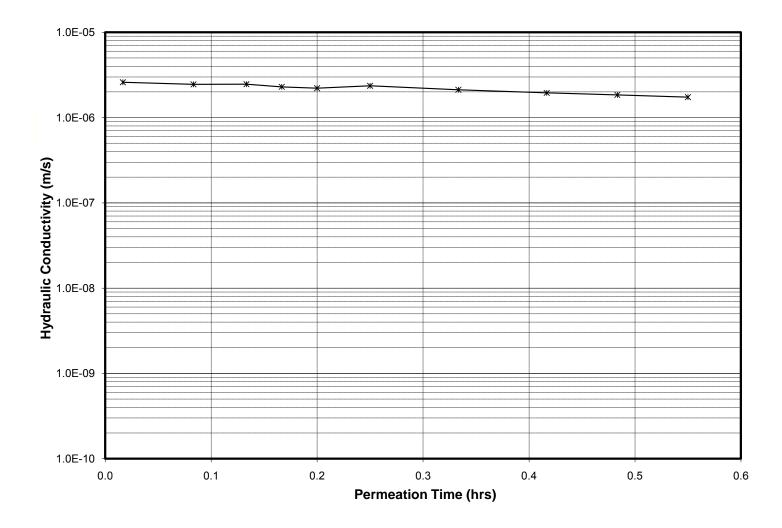
Job No.	21-1-21	199-002	
Tested By	AKV	On	1/26/2010
Comp By	AKV	On	2/3/2010
Checked By	JFL	On	2/8/2010

OTHER INFORMATION:

Burette Corr. Factor, BCF (vol. to height), $1ml = 0.0047 m$ a = 2.13E-04 m ²									
Specific Gravity	Assumed	Meas	ured	=	2.7				
B-Coefficient =	0.95		NOTE:						
Volume of Solid =	62.3	ml	Sample co	omprised of					
Pore Volume (P.V.)=	50.0	ml	50% S-5, 50% S-6						
		_							

 h_1 = head loss across the specimen at time t_1 , m,

- h_2 = head loss across the specimen at time t_2 , m,
- k₂₀ = corrected hydraulic conductivity at temperature of 20 °C
- R_T = correction factor for viscosity of water at various temperatures, T
- = 2.2902(0.9842^T)/T^{0.1702}


MEASURED DATA:

Re	ead Tir	me	Elapsed	Temp	Press	ure Re	adings		Burette Readings				Head Loss	lead Loss Effective Stresses Calculated Flow Volumes					Gradient	K	RT	k ₂₀		
			Time	Т	P _{cell}	Pin	Pout	V _{cell}	V _{in}	Vout	H _{cell}	H _{in}	H _{out}	h	σ' _{max}	σ' _{min}	Inflow	Outflow	Storage	Cum.	(i)			
day	hr	min	(hr)	(°C)	(psi)	(psi)		(ml)	(ml)	(ml)	(m)	(m)	(m)	(m)	(psi)	(psi)	(ml)	(ml)	(ml)	P.V.		(m/sec)		(m/sec)
1	0	0	0.00	22.3	76.2	66.5	65.5	0.0	96.7	1.2	0.000	0.454	0.006	1.097	10.6	9.1				0	19.8			
1	0	1	0.02	22.3	76.2	66.5	65.5	0.0	89.8	7.1	0.000	0.422	0.033	1.037	10.6	9.1	6.9	5.9	1.0	0.1280	18.7	2.7E-06	0.947	2.6E-06
1	0	5	0.08	22.3	76.2	66.5	65.5	0.0	68.6	28.3	0.000	0.322	0.133	0.838	10.4	9.2	21.2	21.2	0.0	0.5520	15.1	2.6E-06	0.947	2.5E-06
1	0	8	0.13	22.3	76.2	66.5	65.5	0.0	55.4	41.5	0.000	0.260	0.195	0.714	10.3	9.3	13.2	13.2	0.0	0.8160	12.9	2.6E-06	0.947	2.5E-06
1	0	10	0.17	22.3	76.2	66.5	65.5	0.0	48.2	48.7	0.000	0.227	0.229	0.646	10.3	9.4	7.2	7.2	0.0	0.9600	11.6	2.4E-06	0.947	2.3E-06
1	0	12	0.20	22.3	76.2	66.5	65.5	0.0	41.9	55.0	0.000	0.197	0.259	0.587	10.3	9.4	6.3	6.3	0.0	1.0860	10.6	2.3E-06	0.947	2.2E-06
1	0	15	0.25	22.3	76.2	66.5	65.5	0.0	33.1	64.0	0.000	0.156	0.301	0.503	10.2	9.5	8.8	9.0	-0.2	1.2639	9.1	2.5E-06	0.947	2.4E-06
1	0	20	0.33	22.3	76.2	66.5	65.5	0.0	22.1	75.0	0.000	0.104	0.353	0.400	10.1	9.6	11.0	11.0	0.0	1.4839	7.2	2.2E-06	0.947	2.1E-06
1	0	25	0.42	22.3	76.2	66.5	65.5	0.0	14.0	83.1	0.000	0.066	0.391	0.324	10.1	9.6	8.1	8.1	0.0	1.6459	5.8	2.1E-06	0.947	1.9E-06
1	0	29	0.48	22.3	76.2	66.5	65.5	0.0	8.9	88.2	0.000	0.042	0.415	0.276	10.0	9.6	5.1	5.1	0.0	1.7479	5.0	2.0E-06	0.947	1.8E-06
1	0	33	0.55	22.3	76.2	66.5	65.5	0.0	4.8	92.3	0.000	0.023	0.434	0.237	10.0	9.7	4.1	4.1	0.0	1.8299	4.3	1.8E-06	0.947	1.7E-06
	Average for last 4: 1.9E-0										1.9E-06													

Project	Skagit River Levees
Boring No.	DD17-3 Levee
Sample No.	S-5/S-6
Depth (ft)	12.5/15.0

Job No.	21-1-21199-002		
Tested by	AKV	On	1/26/2010
Comp by	AKV	On	2/3/2010
Checked by	JFL	On	2/8/2010

-	ч		y
		_	~

SHANNON & WILSON, INC.

400 NORTH 34TH STREET • SUITE 100 P.O. BOX 300303 • SEATTLE, WASHINGTON 98103 206-632-8020 FAX 206-695-6777

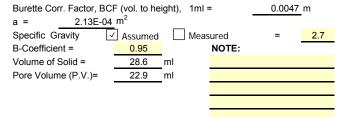
Project	Skagit River Levees
Boring No.	DD22-1 Landward
Sample No.	S-1
Depth (ft)	2.5

WATER	CONTENT DAT	TA:

WATER CO	ONTENT DATA	A:		SPECIMEN DATA:			
	Before Test	After Test			Before Test	After Consol.	After Test
Pan No.	tin cup	Z-24		Height, m	0.0483	0.0483	0.0482
Wet+Tare	46.81	199.06		Diameter, m	0.0369	0.0369	0.0369
Dry+Tare	40.61	179.95		Wet Weight, g	89.95	89.25	95.90
Tare	2.94	103.16		Volume, ml	51.5	51.5	51.4
WC, %	16.5	24.9		Area, m ²	0.00107	0.00107	0.00107
DESCRIPT	ION:		-	Wet Unit Wt, pcf	109.0	108.1	116.4
Brown, silty	, fine SAND; tr	ace of		Dry Unit Wt, pcf	93.6	86.6	93.2
organics; S	М			Est. Saturation,%	55.5	71.0	83.1

FALLING-HEAD INCREASING TAILWATER LEVEL HYDRAULIC CONDUCTIVITY CALCULATION (METHOD C):

a = cross-sectional area of standpipe, m²


L = length of the sample, m

A = cross-sectional area of the sample, m^2

t = elapsed time between determination of h_1 and h_2 , sec.

Job No.	21-1-21	199-002	
Tested By	AKV	On	1/28/2010
Comp By	AKV	On	2/3/2010
Checked By	JFL	On	2/8/2010

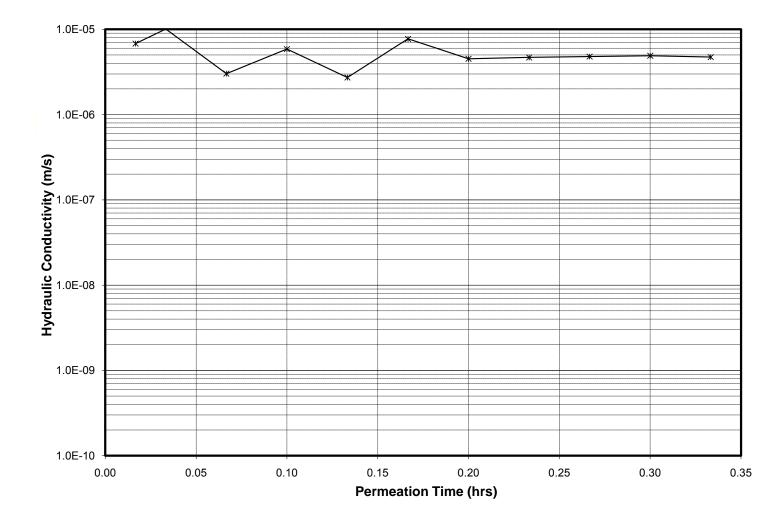
OTHER INFORMATION:

 h_1 = head loss across the specimen at time t_1 , m,

- h_2 = head loss across the specimen at time t_2 , m,
- k₂₀ = corrected hydraulic conductivity at temperature of 20 °C
- R_T = correction factor for viscosity of water at various temperatures, T
 - = 2.2902(0.9842^T)/T^{0.1702}

MEASURED DATA:

 $k = \frac{aL}{2At} ln(\frac{h_1}{h_2})$


R	ead Ti	me	Elapsed	Temp	Press	ure Re	adings			Burette	e Readir	ngs		Head Loss	Effective	Stresses		Calculated Fl	ow Volumes		Gradient	K	RT	k ₂₀
			Time	Т	P _{cell}	Pin	Pout	V _{cell}	V _{in}	V _{out}	H _{cell}	H _{in}	H _{out}	h	σ' _{max}	σ' _{min}	Inflow	Outflow	Storage	Cum.	(i)			
day	hr	min	(hr)	(°C)	(psi)	(psi)	(psi)	(ml)	(ml)	(ml)	(m)	(m)	(m)	(m)	(psi)	(psi)	(ml)	(ml)	(ml)	P.V.		(m/sec)		(m/sec)
1	0	0	0.00	22.4	65.2	56.5	55.5	0.0	95.2	6.6	0.000	0.447	0.031	1.072	9.6	8.1				0	22.2			
1	0	1	0.02	22.4	65.2	56.5	55.5	0.0	85.1	16.1	0.000	0.400	0.076	0.980	9.5	8.1	10.1	9.5	0.6	0.4278	20.3	7.2E-06	0.944	6.8E-06
1	0	2	0.03	22.4	65.2	56.5	55.5	0.0	72.1	29.1	0.000	0.339	0.137	0.858	9.4	8.2	13.0	13.0	0.0	0.9953	17.8	1.1E-05	0.944	1.0E-05
1	0	4	0.07	22.4	65.2	56.5	55.5	0.0	65.1	36.1	0.000	0.306	0.170	0.792	9.4	8.3	7.0	7.0	0.0	1.3008	16.4	3.2E-06	0.944	3.0E-06
1	0	6	0.10	22.4	65.2	56.5	55.5	0.0	53.0	48.2	0.000	0.249	0.227	0.678	9.3	8.3	12.1	12.1	0.0	1.8290	14.1	6.2E-06	0.944	5.9E-06
1	0	8	0.13	22.4	65.2	56.5	55.5	0.0	48.0	53.2	0.000	0.226	0.250	0.631	9.3	8.4	5.0	5.0	0.0	2.0473	13.1	2.9E-06	0.944	2.7E-06
1	0	10	0.17	22.4	65.2	56.5	55.5	0.0	36.1	66.1	0.000	0.170	0.311	0.515	9.2	8.5	11.9	12.9	-1.0	2.5886	10.7	8.2E-06	0.944	7.7E-06
1	0	12	0.20	22.4	65.2	56.5	55.5	0.0	29.8	72.1	0.000	0.140	0.339	0.457	9.1	8.5	6.3	6.0	0.3	2.8570	9.5	4.8E-06	0.944	4.5E-06
1	0	14	0.23	22.4	65.2	56.5	55.5	0.0	23.9	77.5	0.000	0.112	0.364	0.404	9.1	8.5	5.9	5.4	0.5	3.1037	8.4	5.0E-06	0.944	4.7E-06
1	0	16	0.27	22.4	65.2	56.5	55.5	0.0	18.8	82.6	0.000	0.088	0.388	0.356	9.1	8.6	5.1	5.1	0.0	3.3263	7.4	5.1E-06	0.944	4.8E-06
1	0	18	0.30	22.4	65.2	56.5	55.5	0.0	14.2	87.2	0.000	0.067	0.410	0.312	9.0	8.6	4.6	4.6	0.0	3.5271	6.5	5.2E-06	0.944	4.9E-06
1	0	20	0.33	22.4	65.2	56.5	55.5	0.0	10.3	91.1	0.000	0.048	0.428	0.276	9.0	8.6	3.9	3.9	0.0	3.6973	5.7	5.0E-06	0.944	4.7E-06
																						Average for	or last 4:	4.8E-06

Wet+Tare	46.81	199.						
Dry+Tare	40.61	179.						
Tare	2.94	103.						
WC, %	16.5	24.						
DESCRIPT	DESCRIPTION:							
Brown, silty, fine SAND; trace of								

Project	Skagit River Levees
Boring No.	DD22-1 Landward
Sample No.	S-1
Depth (ft)	2.5

Job No.	21-1-21199-002		
Tested by	AKV	On	1/28/2010
Comp by	AKV	On	2/3/2010
Checked by	JFL	On	2/8/2010

-			
		н	
	-	ч	9

Dry+Tare

Tare WC, %

DESCRIPTION:

SHANN	NON	8	VIL	SO	N. INC	З.
GEOTECHNIC						
100 NORTH 34T	STREET	· SUP	TE 100			

PO. BOX 300303 • SEATTLE, WASHINGTON 98103 206-632-8020 FAX 206-695-6777

258.77

101.81

30.0

Project	Skagit River Levees
Boring No.	DD22-1 Levee
Sample No.	S-6/S-7/S-4
Depth (ft)	15.0/17.5/10.0

WATER CONTENT DATA:						
	Before Test	After Test				
Pan No.	tin cup	Z-24				
Wet+Tare	78.02	305.78				

63.93 3.06

23.1

Brown, silty, fine SAND; SM

 $k = \frac{aL}{2At} ln(\frac{h_1}{h_2})$

 $k_{20} = R_T k$

	_	SPECIMEN DATA:			
t			Before Test	After Consol.	After Test
		Height, m	0.0536	0.0536	0.0535
		Diameter, m	0.0508	0.0508	0.0508
		Wet Weight, g	193.67	193.07	203.97
		Volume, ml	108.5	108.4	108.3
		Area, m ²	0.00202	0.00202	0.00202
		Wet Unit Wt, pcf	111.4	111.1	117.6
		Dry Unit Wt, pcf	90.4	85.5	90.5
		Est. Saturation,%	72.4	83.3	93.8

FALLING-HEAD INCREASING TAILWATER LEVEL HYDRAULIC CONDUCTIVITY CALCULATION (METHOD C):

a = cross-sectional area of standpipe, m²

ODEOUVEN DATA

L = length of the sample, m

A = cross-sectional area of the sample, m^2

t = elapsed time between determination of h_1 and h_2 , sec.

C.

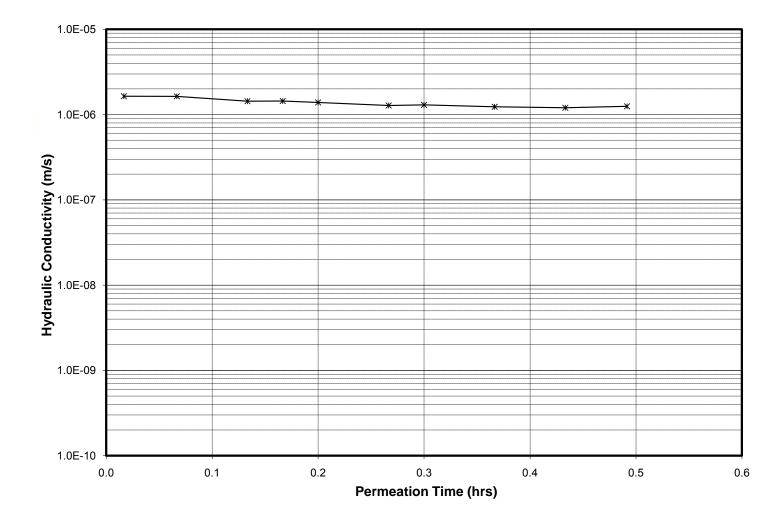
Job No.	21-1-21	199-002	
Tested By	AKV	On	1/26/2010
Comp By	AKV	On	2/3/2010
Checked By	JFL	On	2/8/2010

OTHER INFORMATION:

Burette Corr. Factor, BC a = 2.13E-04	`	ight), 1ml :		0.0047	m
Specific Gravity	Assumed	Meas	sured	=	2.7
B-Coefficient =	0.95		NOTE:	•	
Volume of Solid =	58.2	ml	Sample con	mprised of	
Pore Volume (P.V.)=	50.3	ml	45% S-6, 4	5% S-7,	
			10% S-4		

 h_1 = head loss across the specimen at time t_1 , m,

- h_2 = head loss across the specimen at time t_2 , m,
- k₂₀ = corrected hydraulic conductivity at temperature of 20 °C
- R_T = correction factor for viscosity of water at various temperatures, T
 - = 2.2902(0.9842^T)/T^{0.1702}


MEASURED DATA:

Re	ead Tii	me	Elapsed	Temp	Press	ure Re	adings			Burette	e Readir	ngs		Head Loss	Effective	Stresses		Calculated Fl	ow Volumes		Gradient	K	RT	k ₂₀
			Time	Т	P _{cell}	Pin	Pout	V _{cell}	V _{in}	V _{out}	H _{cell}	H _{in}	H _{out}	h	σ' _{max}	σ' _{min}	Inflow	Outflow	Storage	Cum.	(i)			
day	hr	min	(hr)	(°C)	(psi)	(psi)	(psi)	(ml)	(ml)	(ml)	(m)	(m)	(m)	(m)	(psi)	(psi)	(ml)	(ml)	(ml)	P.V.		(m/sec)		(m/sec)
1	0	0	0.00	22.3	68.2	61.5	60.5	0.0	99.5	0.8	0.000	0.468	0.004	1.114	7.6	6.0				0	20.8			
1	0	1	0.02	22.3	68.2	61.5	60.5	0.0	95.1	5.0	0.000	0.447	0.024	1.074	7.6	6.1	4.4	4.2	0.2	0.0856	20.0	1.7E-06	0.947	1.6E-06
1	0	4	0.07	22.3	68.2	61.5	60.5	0.0	83.2	17.0	0.000	0.391	0.080	0.961	7.5	6.1	11.9	12.0	-0.1	0.3233	17.9	1.7E-06	0.947	1.6E-06
1	0	8	0.13	22.3	68.2	61.5	60.5	0.0	70.7	29.3	0.000	0.332	0.138	0.845	7.4	6.2	12.5	12.3	0.2	0.5700	15.8	1.5E-06	0.947	1.4E-06
1	0	10	0.17	22.3	68.2	61.5	60.5	0.0	65.1	35.0	0.000	0.306	0.165	0.792	7.4	6.3	5.6	5.7	-0.1	0.6824	14.8	1.5E-06	0.947	1.4E-06
1	0	12	0.20	22.3	68.2	61.5	60.5	0.0	60.0	40.1	0.000	0.282	0.188	0.744	7.4	6.3	5.1	5.1	0.0	0.7839	13.9	1.5E-06	0.947	1.4E-06
1	0	16	0.27	22.3	68.2	61.5	60.5	0.0	51.2	48.5	0.000	0.241	0.228	0.663	7.3	6.4	8.8	8.4	0.4	0.9550	12.4	1.4E-06	0.947	1.3E-06
1	0	18	0.30	22.3	68.2	61.5	60.5	0.0	47.2	52.5	0.000	0.222	0.247	0.625	7.3	6.4	4.0	4.0	0.0	1.0346	11.7	1.4E-06	0.947	1.3E-06
1	0	22	0.37	22.3	68.2	61.5	60.5	0.0	40.2	59.5	0.000	0.189	0.280	0.559	7.2	6.4	7.0	7.0	0.0	1.1739	10.4	1.3E-06	0.947	1.2E-06
1	0	26	0.43	22.3	68.2	61.5	60.5	0.0	34.1	65.6	0.000	0.160	0.308	0.502	7.2	6.5	6.1	6.1	0.0	1.2952	9.4	1.3E-06	0.947	1.2E-06
1	0	30	0.49	22.3	68.2	61.5	60.5	0.0	29.1	70.6	0.000	0.137	0.332	0.455	7.2	6.5	5.0	5.0	0.0	1.3947	8.5	1.3E-06	0.947	1.3E-06
																						Average for	or last 4:	1.2E-06

Project	Skagit River Levees
Boring No.	DD22-1 Levee
Sample No.	S-6/S-7/S-4
Depth (ft)	15.0/17.5/10.0

Job No.	21-1-21199-002		
Tested by	AKV	On	1/26/2010
Comp by	AKV	On	2/3/2010
Checked by	JFL	On	2/8/2010

-	ч		y
-		_	e.,

SHAN	INO	N&	WIL	SON.	INC.
GEOTECHN	ICAL AN	DENV	RUNNEN	TAL CONS	SULTANTS
and automatic	ani an		NET AND		

INCOMENTAL CONTRACTOR

400 NORTH 34TH STREET • SUITE 100 P.O. BOX 300303 • SEATTLE, WASHINGTON 98103 206-632-8020 FAX 206-695-6777

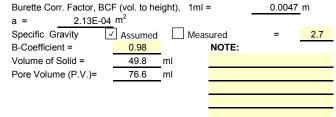
Project	Skagit River Levees
Boring No.	DD22-2 Landward
Sample No.	S-2
Depth (ft)	5.3

MATER CONTENT DATA.							
	Before Test	After Test					
Pan No.	tin cup	Z-24					
Wet+Tare	119.83	309.96					
Dry+Tare	79.21	234.52					
Tare	2.98	103.09					
WC, %	53.3	57.4					
DESCRIPTION:							
Gray, slightly clayey SILT; orange							
mottling an	d oxidation; ML	_					

	OI EOIMIEN DATA.			
st		Before Test	After Consol.	After Test
	Height, m	0.0618	0.0613	0.0615
	Diameter, m	0.0511	0.0511	0.0511
	Wet Weight, g	206.24	205.54	206.87
	Volume, ml	126.4	125.5	125.8
	Area, m ²	0.00205	0.00205	0.00205
	Wet Unit Wt, pcf	101.8	102.2	102.6
	Dry Unit Wt, pcf	66.4	64.9	65.2
	Est. Saturation,%	93.6	97.2	97.8

FALLING-HEAD INCREASING TAILWATER LEVEL HYDRAULIC CONDUCTIVITY CALCULATION (METHOD C):

a = cross-sectional area of standpipe, m²


L = length of the sample, m

A = cross-sectional area of the sample, m^2

t = elapsed time between determination of h_1 and h_2 , sec.

Job No. 21-1-21199-002 AKV On 1/20/2010 Tested By AKV On 2/2/2010 Comp By Checked By JFL On 2/8/2010

OTHER INFORMATION:

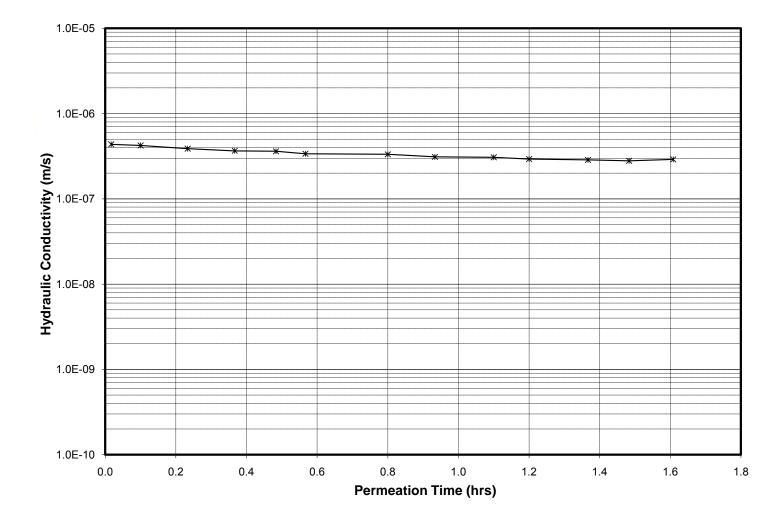
 h_1 = head loss across the specimen at time t_1 , m,

- h_2 = head loss across the specimen at time t_2 , m,
- k₂₀ = corrected hydraulic conductivity at temperature of 20 °C
- R_T = correction factor for viscosity of water at various temperatures, T
 - $= 2.2902(0.9842^{T})/T^{0.1702}$

MEASURED DATA:

R	ead Ti	me	Elapsed	Temp	Press	ure Re	adings			Burette	e Readir	ngs		Head Loss	Effective	Stresses		Calculated FI	ow Volumes		Gradient	K	RT	k ₂₀
			Time	Т	P _{cell}	Pin	Pout	V _{cell}	V _{in}	V _{out}	H _{cell}	H _{in}	H _{out}	h	σ' _{max}	σ'_{min}	Inflow	Outflow	Storage	Cum.	(i)			
day	hr	min	(hr)	(°C)	(psi)	(psi)	(psi)	(ml)	(ml)	(ml)	(m)	(m)	(m)	(m)	(psi)	(psi)	(ml)	(ml)	(ml)	P.V.		(m/sec)		(m/sec)
1	0	0	0.00	22.5	34.0	32.0	30.0	0.0	99.1	2.9	0.000	0.466	0.014	1.798	3.9	1.3				0	29.1			
1	0	1	0.02	22.5	34.0	32.0	30.0	0.0	97.0	4.1	0.000	0.456	0.019	1.782	3.9	1.4	2.1	1.2	0.9	0.0215	28.9	4.6E-07	0.942	4.4E-07
1	0	6	0.10	22.5	34.0	32.0	30.0	0.0	89.3	12.0	0.000	0.420	0.056	1.709	3.8	1.4	7.7	7.9	-0.2	0.1234	27.7	4.5E-07	0.942	4.2E-07
1	0	14	0.23	22.5	34.0	32.0	30.0	0.0	78.5	22.9	0.000	0.369	0.108	1.607	3.8	1.5	10.8	10.9	-0.1	0.2650	26.0	4.1E-07	0.942	3.9E-07
1	0	22	0.37	22.5	34.0	32.0	30.0	0.0	68.9	32.6	0.000	0.324	0.153	1.516	3.7	1.5	9.6	9.7	-0.1	0.3909	24.6	3.9E-07	0.942	3.7E-07
1	0	29	0.48	22.5	34.0	32.0	30.0	0.0	60.9	40.4	0.000	0.286	0.190	1.442	3.6	1.6	8.0	7.8	0.2	0.4941	23.4	3.8E-07	0.942	3.6E-07
1	0	34	0.57	22.5	34.0	32.0	30.0	0.0	56.0	45.6	0.000	0.263	0.214	1.395	3.6	1.6	4.9	5.2	-0.3	0.5600	22.6	3.6E-07	0.942	3.4E-07
1	0	48	0.80	22.5	34.0	32.0	30.0	0.0	42.8	58.6	0.000	0.201	0.275	1.272	3.5	1.7	13.2	13.0	0.2	0.7310	20.6	3.5E-07	0.942	3.3E-07
1	0	56	0.93	22.5	34.0	32.0	30.0	0.0	36.3	65.1	0.000	0.171	0.306	1.210	3.5	1.8	6.5	6.5	0.0	0.8158	19.6	3.3E-07	0.942	3.1E-07
1	1	6	1.10	22.5	34.0	32.0	30.0	0.0	28.7	72.7	0.000	0.135	0.342	1.139	3.4	1.8	7.6	7.6	0.0	0.9150	18.4	3.3E-07	0.942	3.1E-07
1	1	12	1.20	22.5	34.0	32.0	30.0	0.0	24.6	76.9	0.000	0.116	0.361	1.100	3.4	1.8	4.1	4.2	-0.1	0.9692	17.8	3.1E-07	0.942	2.9E-07
1	1	22	1.37	22.5	34.0	32.0	30.0	0.0	18.2	83.4	0.000	0.086	0.392	1.039	3.4	1.9	6.4	6.5	-0.1	1.0534	16.8	3.0E-07	0.942	2.9E-07
1	1	29	1.48	22.5	34.0	32.0	30.0	0.0	14.0	87.6	0.000	0.066	0.412	1.000	3.3	1.9	4.2	4.2	0.0	1.1082	16.2	3.0E-07	0.942	2.8E-07
1	1	37	1.61	22.5	34.0	32.0	30.0	0.0	9.5	92.1	0.000	0.045	0.433	0.958	3.3	1.9	4.5	4.5	0.0	1.1670	15.5	3.1E-07	0.942	2.9E-07
		I																						
		I																						
																						Average for	or last 4:	2.9E-07

 $k = \frac{aL}{2At} ln(\frac{h_1}{h_2})$


 $k_{20} = R_T k$

WATER CONTENT DATA:

Project	Skagit River Levees		
Boring No.	DD22-2 Landward		
Sample No.	S-2		
Depth (ft)	5.3		

Job No.	21-1-21199-002		
Tested by	AKV	On	1/20/2010
Comp by	AKV	On	2/2/2010
Checked by	JFL	On	2/8/2010

_	8		.8
-	a		
-	ч	в	8

SHANN	ON&	WILSO	DN, INC.
GEOTECHNICAL			

400 NORTH 34TH STREET • SUITE 100 P.O. BOX 300303 • SEATTLE, WASHINGTON 98103 206-632-8020 FAX 206-695-6777

Project	Skagit River Levees
Boring No.	DD22-2 Landward
Sample No.	S-13
Depth (ft)	41.2

After Test

0.0606

0.0535

214.78

136.2

WATER CONTENT DATA:	
---------------------	--

WATER CO		A:	_	SPECIMEN DATA:				
	Before Test	After Test			Before Test	After Consol.		
Pan No.	tin cup	Z-24		Height, m	0.0612	0.0606		
Wet+Tare	129.49	317.29		Diameter, m	0.0535	0.0535		
Dry+Tare	97.10	264.52		Wet Weight, g	218.29	216.99		
Tare	3.01	3.01 102.51		Volume, ml	137.7	136.3		
WC, %	WC, % 34.4 32.6			Area, m ²	0.00225	0.00225		
DESCRIPT	DESCRIPTION:			Wet Unit Wt, pcf	98.9	99.3		
Gray-brown	n, silty, fine SAI	ND; SM		Dry Unit Wt, pcf	73.6	74.9		
				Est. Saturation,%	72.1	70.4		

SPECIMEN DATA

Pore Volume (P.	0.00225	0.00225
	98.4	99.3
	74.2	74.9
	69.3	70.4

FALLING-HEAD INCREASING TAILWATER LEVEL HYDRAULIC CONDUCTIVITY CALCULATION (METHOD C):

a = cross-sectional area of standpipe, m²

L = length of the sample, m

A = cross-sectional area of the sample, m^2

t = elapsed time between determination of h_1 and h_2 , sec.

Job No. 21-1-21199-002 AKV On 1/27/2010 Tested By AKV On 2/2/2010 Comp By JFL On 2/8/2010 Checked By

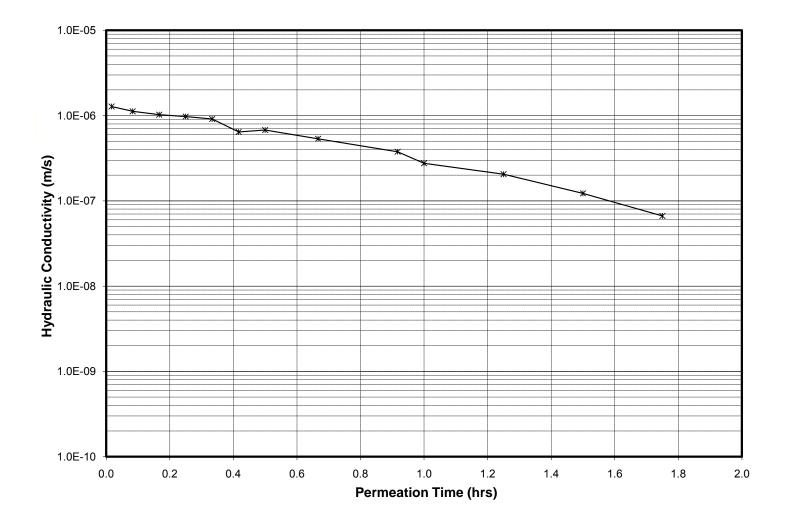
OTHER INFORMATION:

Burette Corr. Factor, BC a = 2.13E-04	=	0.0047 m			
Specific Gravity	-	Meas	sured	=	2.7
B-Coefficient =	0.97		NOTE:		
Volume of Solid =	60.1	ml	Probable r	migration of	fines
Pore Volume (P.V.)=	77.5	ml	during test	ting.	

 h_1 = head loss across the specimen at time t_1 , m,

- h_2 = head loss across the specimen at time t_2 , m,
- k₂₀ = corrected hydraulic conductivity at temperature of 20 °C
- R_T = correction factor for viscosity of water at various temperatures, T
 - $= 2.2902(0.9842^{T})/T^{0.1702}$

MEASURED DATA:


 $k = \frac{aL}{2At} ln(\frac{h_1}{h_2})$

R	ead Ti	me	Elapsed	Temp	Press	ure Re	adings			Burette	e Readir	ngs		Head Loss	Effective	Stresses		Calculated FI	ow Volumes		Gradient	K	RT	k ₂₀
			Time	Т	P _{cell}	Pin	Pout	V _{cell}	V _{in}	V _{out}	H _{cell}	H _{in}	H _{out}	h	σ' _{max}	σ' _{min}	Inflow	Outflow	Storage	Cum.	(i)			
day	hr	min	(hr)	(°C)	(psi)	(psi)	(psi)	(ml)	(ml)	(ml)	(m)	(m)	(m)	(m)	(psi)	(psi)	(ml)	(ml)	(ml)	P.V.		(m/sec)		(m/sec)
1	0	0	0.00	22.4	54.5	36.5	35.5	0.0	99.0	4.2	0.000	0.465	0.020	1.088	18.9	17.3				0	17.8			
1	0	1	0.02	22.4	54.5	36.5	35.5	0.0	95.6	7.2	0.000	0.449	0.034	1.058	18.9	17.4	3.4	3.0	0.4	0.0413	17.3	1.4E-06	0.944	1.3E-06
1	0	5	0.08	22.4	54.5	36.5	35.5	0.0	84.9	17.6	0.000	0.399	0.083	0.959	18.8	17.4	10.7	10.4	0.3	0.1774	15.7	1.2E-06	0.944	1.1E-06
1	0	10	0.17	22.4	54.5	36.5	35.5	0.0	74.1	28.5	0.000	0.348	0.134	0.857	18.7	17.5	10.8	10.9	-0.1	0.3173	14.0	1.1E-06	0.944	1.0E-06
1	0	15	0.25	22.4	54.5	36.5	35.5	0.0	65.2	38.1	0.000	0.306	0.179	0.770	18.7	17.6	8.9	9.6	-0.7	0.4366	12.6	1.0E-06	0.944	9.8E-07
1	0	20	0.33	22.4	54.5	36.5	35.5	0.0	57.0	45.5	0.000	0.268	0.214	0.697	18.6	17.6	8.2	7.4	0.8	0.5373	11.4	9.7E-07	0.944	9.1E-07
1	0	25	0.42	22.4	54.5	36.5	35.5	0.0	52.2	50.8	0.000	0.245	0.239	0.649	18.6	17.7	4.8	5.3	-0.5	0.6024	10.6	6.8E-07	0.944	6.4E-07
1	0	30	0.50	22.4	54.5	36.5	35.5	0.0	47.5	56.0	0.000	0.223	0.263	0.603	18.5	17.7	4.7	5.2	-0.5	0.6662	9.8	7.2E-07	0.944	6.8E-07
1	0	40	0.67	22.4	54.5	36.5	35.5	0.0	40.1	62.8	0.000	0.188	0.295	0.536	18.5	17.7	7.4	6.8	0.6	0.7578	8.7	5.7E-07	0.944	5.4E-07
1	0	55	0.92	22.4	54.5	36.5	35.5	0.0	33.5	69.5	0.000	0.157	0.327	0.473	18.4	17.8	6.6	6.7	-0.1	0.8436	7.7	4.0E-07	0.944	3.8E-07
1	1	0	1.00	22.4	54.5	36.5	35.5	0.0	32.0	71.0	0.000	0.150	0.334	0.459	18.4	17.8	1.5	1.5	0.0	0.8630	7.5	2.9E-07	0.944	2.8E-07
1	1	15	1.25	22.4	54.5	36.5	35.5	0.0	28.8	74.2	0.000	0.135	0.349	0.429	18.4	17.8	3.2	3.2	0.0	0.9042	7.0	2.2E-07	0.944	2.1E-07
1	1	30	1.50	22.4	54.5	36.5	35.5	0.0	27.0	76.0	0.000	0.127	0.357	0.412	18.4	17.8	1.8	1.8	0.0	0.9275	6.7	1.3E-07	0.944	1.2E-07
1	1	45	1.75	22.4	54.5	36.5	35.5	0.0	26.1	77.0	0.000	0.123	0.362	0.403	18.4	17.8	0.9	1.0	-0.1	0.9397	6.6	7.1E-08	0.944	6.7E-08
	Average for last 4: 4.7E-07																							

Project	Skagit River Levees
Boring No.	DD22-2 Landward
Sample No.	S-13
Depth (ft)	41.2

Job No.	21-1-21199-002		
Tested by	AKV	On	1/27/2010
Comp by	AKV	On	2/2/2010
Checked by	JFL	On	2/8/2010

_	8	
-	н	
-	ч	

SHANNON & WILSON, INC.

400 NORTH 34TH STREET • SUITE 100 P.O. BOX 300303 • SEATTLE, WASHINGTON 98103 206-632-8020 FAX 206-695-6777

Project	Skagit River Levees
Boring No.	DD22-2 Levee
Sample No.	S-7
Depth (ft)	18.3

After Test

0.0582

0.0502

208.99

115.2

0.00198

113.2

82.8

WATER CO	ONTENT DATA	۱:
	Before Test	A

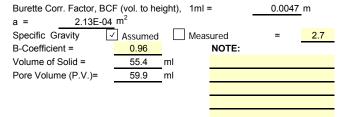
WATER CO	JNIENI DAIA	۹.	_	SFECIMIEN DATA.			
	Before Test	After Test			Before Test	After Consol.	
Pan No.	tin cup	Z-24		Height, m	0.0583	0.0580	
Wet+Tare	Tare 123.72 311.18			Diameter, m	0.0502	0.0502	
Dry+Tare	Dry+Tare 88.52 255.09			Wet Weight, g	211.21	210.21	
Tare	are <u>3.05</u> 102.19			Volume, ml	115.3	114.7	
WC, %	41.2	36.7		Area, m ²	0.00198	0.00198	
DESCRIPT	ION:		-	Wet Unit Wt, pcf	114.3	114.4	
Gray-brown	n, fine sandy SI	LT; ML		Dry Unit Wt, pcf	81.0	83.7	
				Est. Saturation,%	102.9	97.7	

95.7

SPECIMEN DATA:

FALLING-HEAD INCREASING TAILWATER LEVEL HYDRAULIC CONDUCTIVITY CALCULATION (METHOD C):

a = cross-sectional area of standpipe, m²


L = length of the sample, m

A = cross-sectional area of the sample, m^2

t = elapsed time between determination of h_1 and h_2 , sec.

Job No.	21-1-21	199-002	
Tested By	AKV	On	1/20/2010
Comp By	AKV	On	2/2/2010
Checked By	JFL	On	2/5/2010

OTHER INFORMATION:

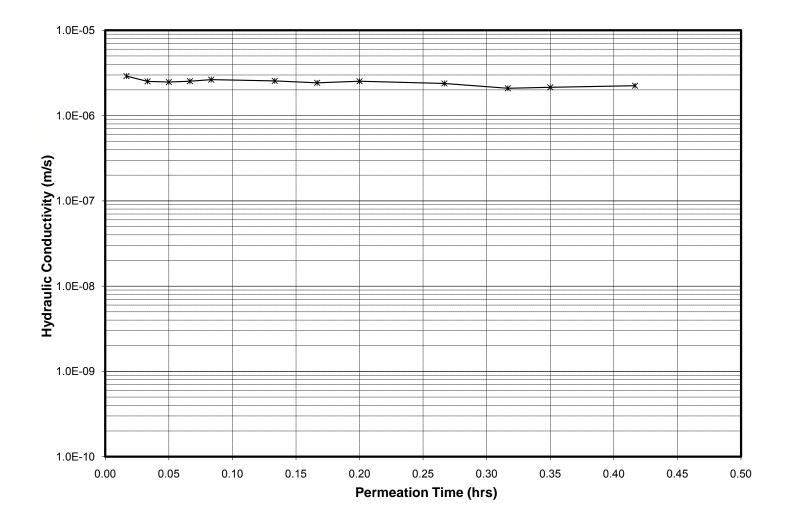
 h_1 = head loss across the specimen at time t_1 , m,

- h_2 = head loss across the specimen at time t_2 , m,
- k₂₀ = corrected hydraulic conductivity at temperature of 20 °C
- R_T = correction factor for viscosity of water at various temperatures, T
 - = 2.2902(0.9842^T)/T^{0.1702}

MEASURED DATA:

 $k = \frac{aL}{2At} ln(\frac{h_1}{h_2})$

 $k_{20} = R_T k$


R	ead Ti	me	Elapsed	ed Temp Pressure Readings			Burette Readings					Head Loss Effective Stresses		Calculated Flow Volumes				Gradient	nt <i>K</i>	R _T	k ₂₀			
			Time	Т	P _{cell}	Pin	Pout	V _{cell}	V _{in}	V _{out}	H _{cell}	H _{in}	H _{out}	h	σ' _{max}	σ'_{min}	Inflow	Outflow	Storage	Cum.	(i)			
day	hr	min	(hr)	(°C)	(psi)	(psi)	(psi)	(ml)	(ml)	(ml)	(m)	(m)	(m)	(m)	(psi)	(psi)	(ml)	(ml)	(ml)	P.V.		(m/sec)		(m/sec)
1	0	0	0.00	22.6	39.2	31.5	30.5	0.0	97.4	1.0	0.000	0.458	0.005	1.099	8.6	7.0				0	18.9			
1	0	1	0.02	22.6	39.2	31.5	30.5	0.0	90.6	7.6	0.000	0.426	0.036	1.036	8.6	7.1	6.8	6.6	0.2	0.1119	17.8	3.1E-06	0.94	2.9E-06
1	0	2	0.03	22.6	39.2	31.5	30.5	0.0	85.0	13.0	0.000	0.400	0.061	0.984	8.5	7.1	5.6	5.4	0.2	0.2038	16.9	2.7E-06	0.94	2.5E-06
1	0	3	0.05	22.6	39.2	31.5	30.5	0.0	79.9	18.2	0.000	0.376	0.086	0.935	8.5	7.2	5.1	5.2	-0.1	0.2898	16.1	2.6E-06	0.94	2.5E-06
1	0	4	0.07	22.6	39.2	31.5	30.5	0.0	74.8	23.1	0.000	0.352	0.109	0.888	8.5	7.2	5.1	4.9	0.2	0.3733	15.2	2.7E-06	0.94	2.5E-06
1	0	5	0.08	22.6	39.2	31.5	30.5	0.0	69.9	28.1	0.000	0.329	0.132	0.842	8.4	7.2	4.9	5.0	-0.1	0.4559	14.4	2.8E-06	0.94	2.6E-06
1	0	8	0.13	22.6	39.2	31.5	30.5	0.0	57.0	41.0	0.000	0.268	0.193	0.721	8.3	7.3	12.9	12.9	0.0	0.6714	12.4	2.7E-06	0.94	2.5E-06
1	0	10	0.17	22.6	39.2	31.5	30.5	0.0	49.8	48.2	0.000	0.234	0.227	0.653	8.3	7.4	7.2	7.2	0.0	0.7916	11.2	2.6E-06	0.94	2.4E-06
1	0	12	0.20	22.6	39.2	31.5	30.5	0.0	43.0	55.0	0.000	0.202	0.259	0.589	8.2	7.4	6.8	6.8	0.0	0.9052	10.1	2.7E-06	0.94	2.5E-06
1	0	16	0.27	22.6	39.2	31.5	30.5	0.0	32.1	66.2	0.000	0.151	0.311	0.485	8.2	7.5	10.9	11.2	-0.3	1.0897	8.3	2.5E-06	0.94	2.4E-06
1	0	19	0.32	22.6	39.2	31.5	30.5	0.0	25.5	72.0	0.000	0.120	0.338	0.427	8.1	7.5	6.6	5.8	0.8	1.1933	7.3	2.2E-06	0.94	2.1E-06
1	0	21	0.35	22.6	39.2	31.5	30.5	0.0	21.9	76.0	0.000	0.103	0.357	0.391	8.1	7.6	3.6	4.0	-0.4	1.2567	6.7	2.3E-06	0.94	2.1E-06
1	0	25	0.42	22.6	39.2	31.5	30.5	0.0	15.1	83.1	0.000	0.071	0.391	0.326	8.1	7.6	6.8	7.1	-0.3	1.3728	5.6	2.4E-06	0.94	2.2E-06
	Average for last 4: 2.2E-06																							

3/4/2010 7:56 AM

Project	Skagit River Levees					
Boring No.	DD22-2 Levee					
Sample No.	S-7					
Depth (ft)	18.3					

Job No.	21-1-21199-002		
Tested by	AKV	On	1/20/2010
Comp by	AKV	On	2/2/2010
Checked by	JFL	On	2/5/2010

SHANNON & WILSON, INC.

APPENDIX D

LIQUEFACTION FACTOR OF SAFETY ANALYSES

4

. . .

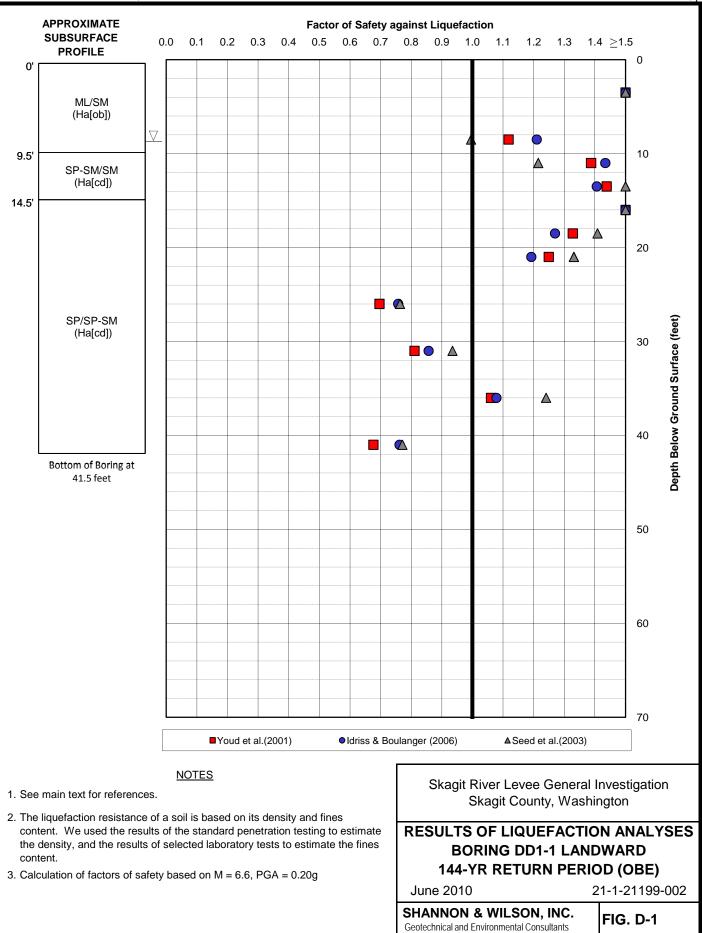
_

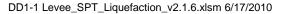
APPENDIX D

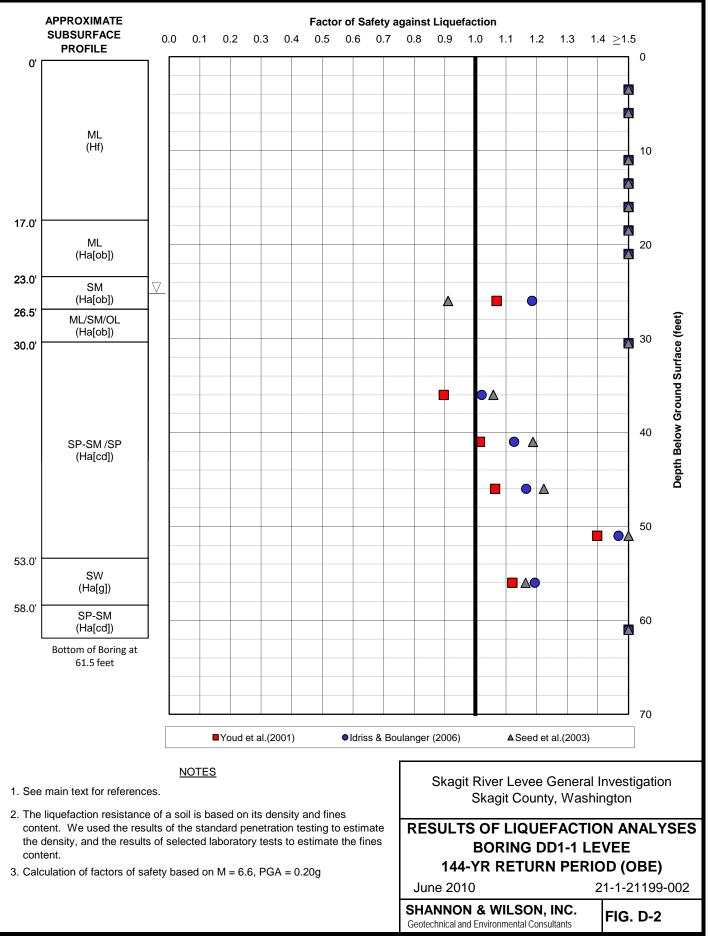
LIQUEFACTION FACTOR OF SAFETY ANALYSES

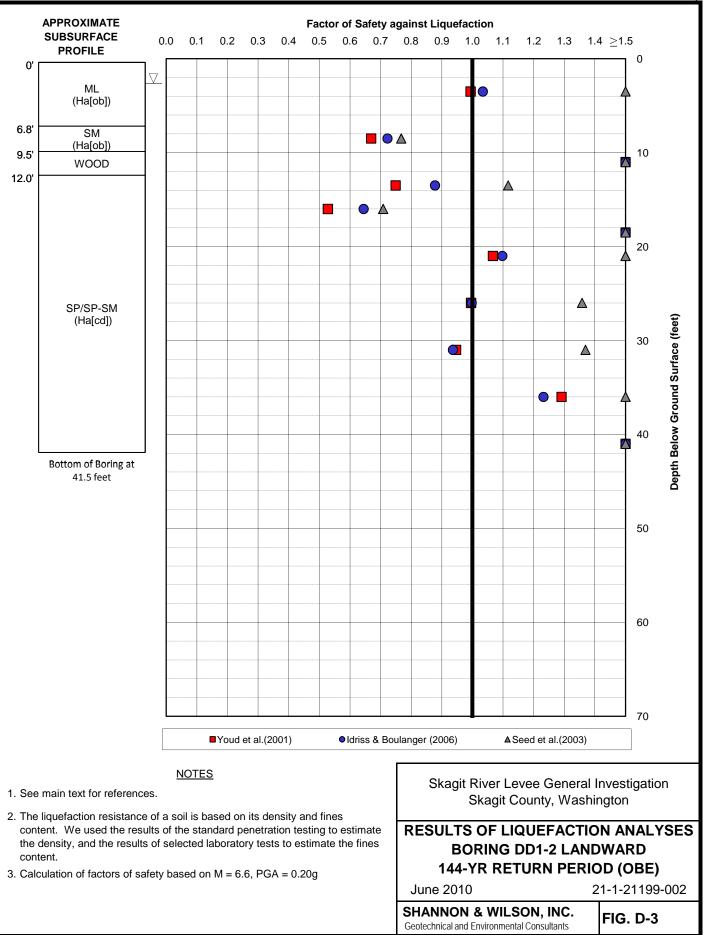
TABLE OF CONTENTS

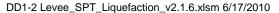
FIGURES

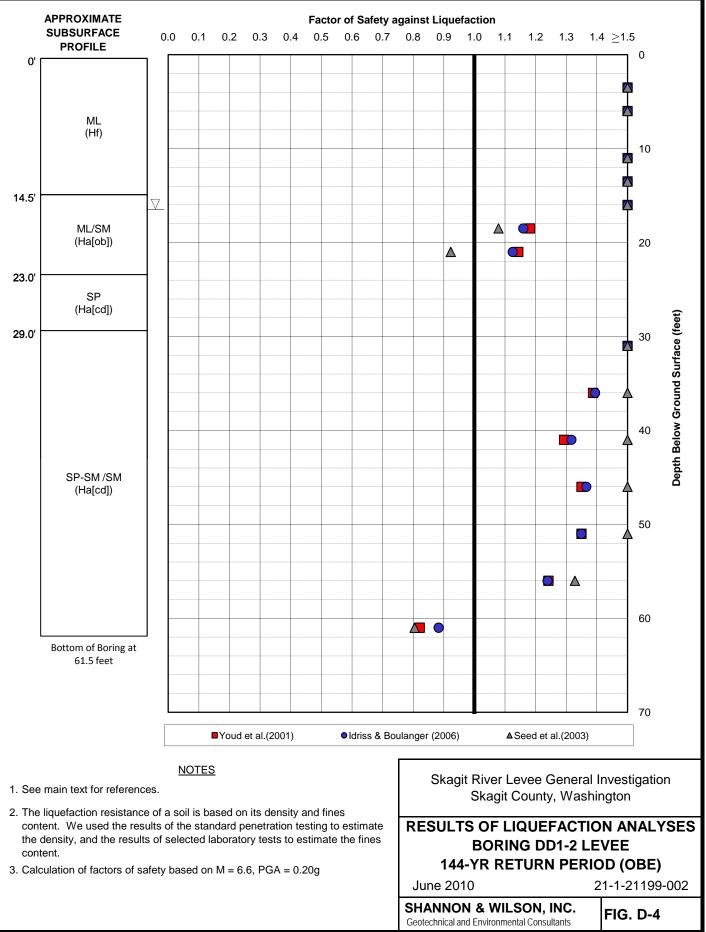

....

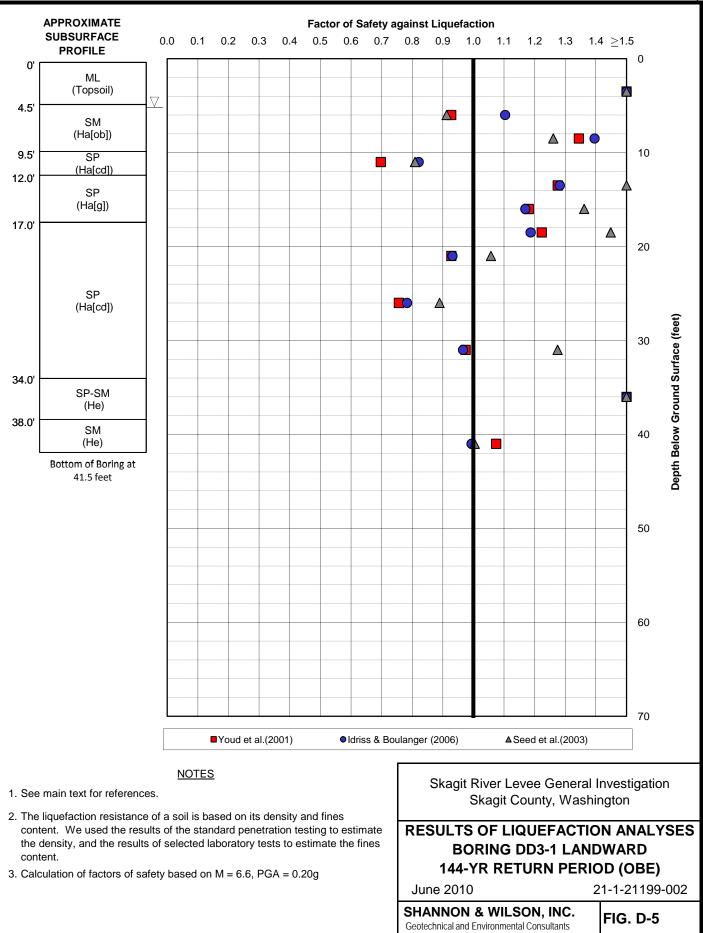

D-1	(OBE) Results of Liquefaction Analyses Boring DD1-1 Landward, 144-yr Return Period
D-2	Results of Liquefaction Analyses Boring DD1-1 Levee, 144-yr Return Period (OBE)
D-3	Results of Liquefaction Analyses Boring DD1-2 Landward, 144-yr Return Period (OBE)
D-4	Results of Liquefaction Analyses Boring DD1-2 Levee, 144-yr Return Period (OBE)
D-5	Results of Liquefaction Analyses Boring DD3-1 Landward, 144-yr Return Period (OBE)
D-6	Results of Liquefaction Analyses Boring DD3-1 Levee, 144-yr Return Period (OBE)
D-7	Results of Liquefaction Analyses Boring DD17-1 Landward, 144-yr Return Period (OBE)
D-8	Results of Liquefaction Analyses Boring DD17-1 Levee, 144-yr Return Period (OBE)
D-9	Results of Liquefaction Analyses Boring DD17-2 Landward, 144-yr Return Period (OBE)
D-10	Results of Liquefaction Analyses Boring DD17-2 Levee, 144-yr Return Period (OBE)
D-11	Results of Liquefaction Analyses Boring DD17-3 Landward, 144-yr Return Period (OBE)
D-12	Results of Liquefaction Analyses Boring DD17-3 Levee, 144-yr Return Period (OBE)
D-13	Results of Liquefaction Analyses Boring DD22-1 Landward, 144-yr Return Period (OBE)
D-14	Results of Liquefaction Analyses Boring DD22-1 Levee, 144-yr Return Period (OBE)
D-15	Results of Liquefaction Analyses Boring DD22-2 Landward, 144-yr Return Period (OBE)
D-16	Results of Liquefaction Analyses Boring DD22-2 Levee, 144-yr Return Period (OBE)
D-17	Results of Liquefaction Analyses Boring DD1-1 Landward, 975-yr Return Period
D-18	Results of Liquefaction Analyses Boring DD1-1 Levee, 975-yr Return Period

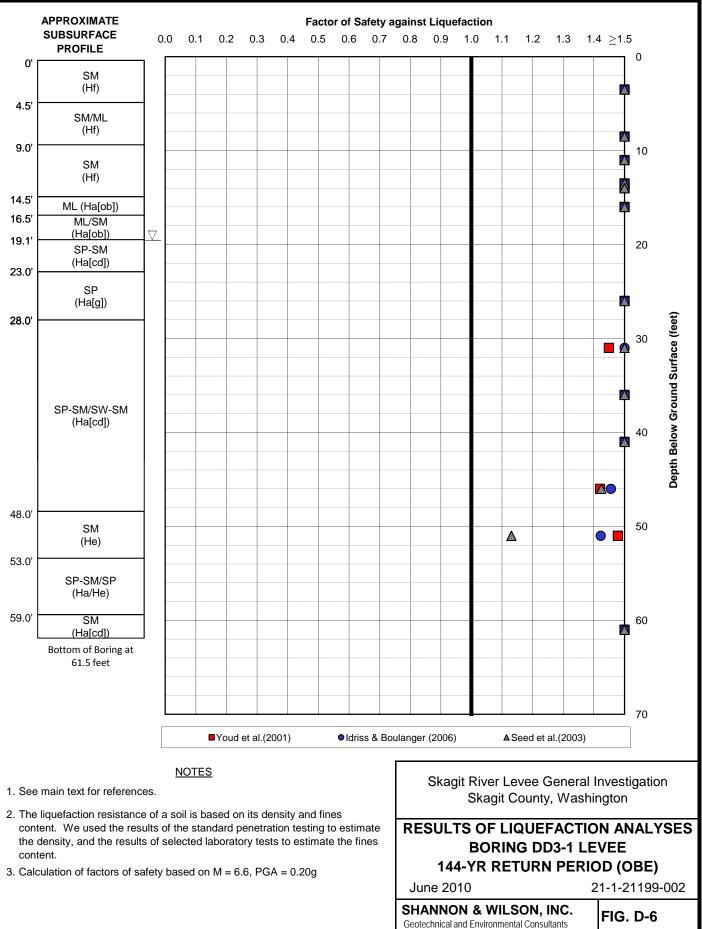

TABLE OF CONTENTS (cont.)

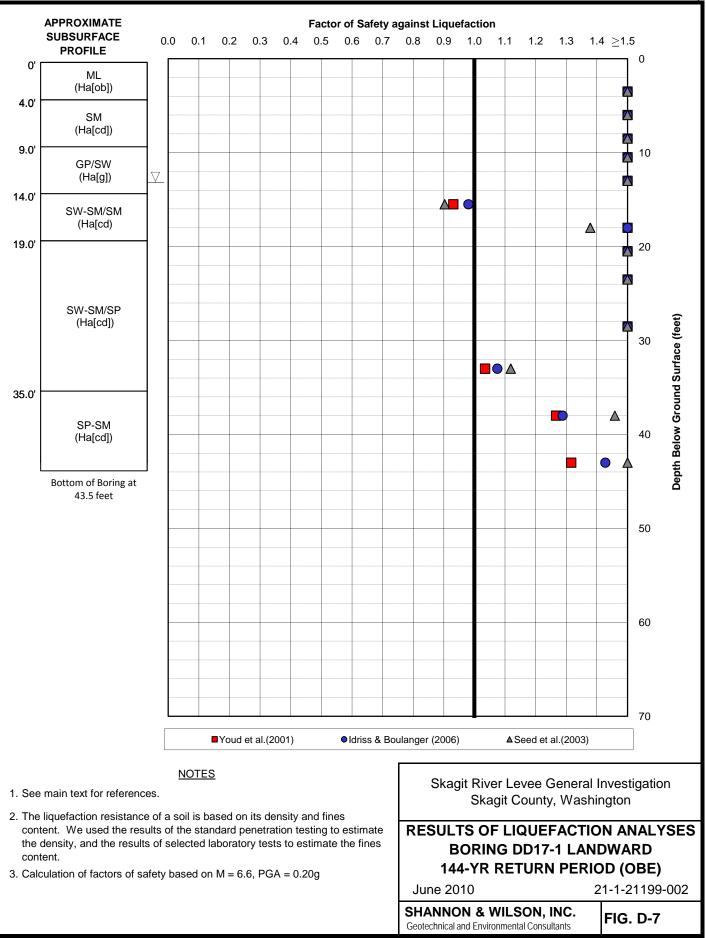

FIGURES (cont.)

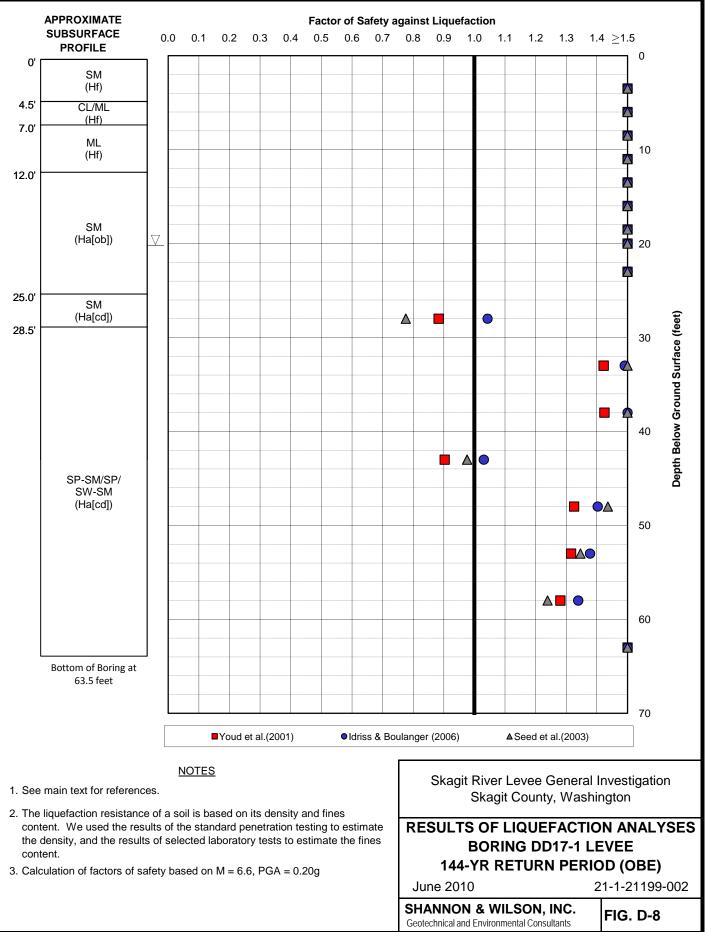

- D-19 Results of Liquefaction Analyses Boring DD1-2 Landward, 975-yr Return Period
- D-20 Results of Liquefaction Analyses Boring DD1-2 Levee, 975-yr Return Period
- D-21 Results of Liquefaction Analyses Boring DD3-1 Landward, 975-yr Return Period
- D-22 Results of Liquefaction Analyses Boring DD3-1 Levee, 975-yr Return Period
- D-23 Results of Liquefaction Analyses Boring DD17-1 Landward, 975-yr Return Period
- D-24 Results of Liquefaction Analyses Boring DD17-1 Levee, 975-yr Return Period
- D-25 Results of Liquefaction Analyses Boring DD17-2 Landward, 975-yr Return Period
- D-26 Results of Liquefaction Analyses Boring DD17-2 Levee, 975-yr Return Period
- D-27 Results of Liquefaction Analyses Boring DD17-3 Landward, 975-yr Return Period
- D-28 Results of Liquefaction Analyses Boring DD17-3 Levee, 975-yr Return Period
- D-29 Results of Liquefaction Analyses Boring DD22-1 Landward, 975-yr Return Period
- D-30 Results of Liquefaction Analyses Boring DD22-1 Levee, 975-yr Return Period
- D-31 Results of Liquefaction Analyses Boring DD22-2 Landward, 975-yr Return Period
- D-32 Results of Liquefaction Analyses Boring DD22-2 Levee, 975-yr Return Period

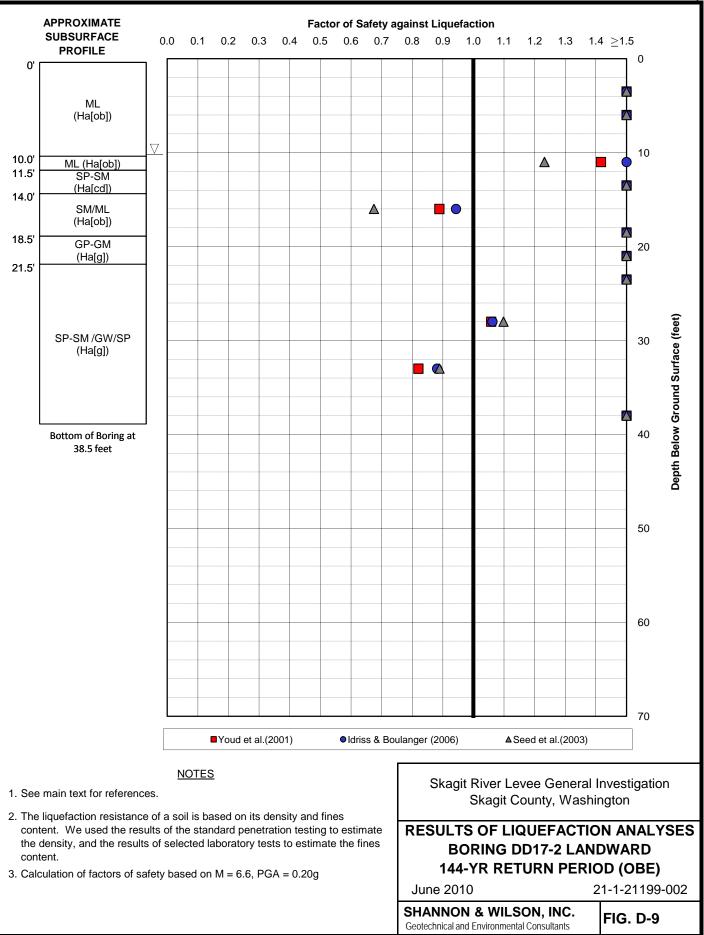


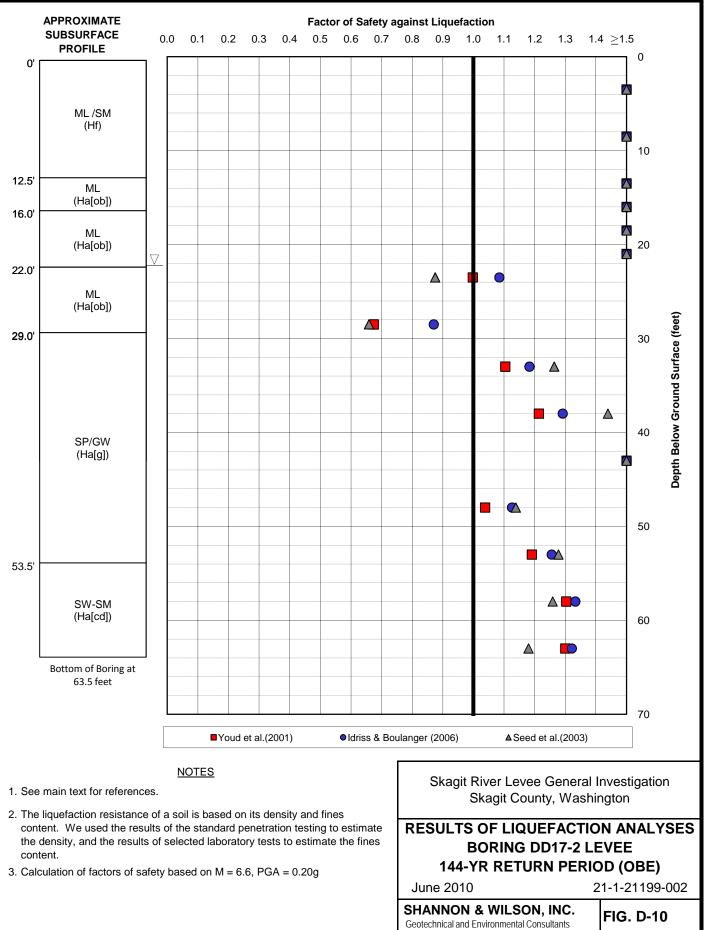


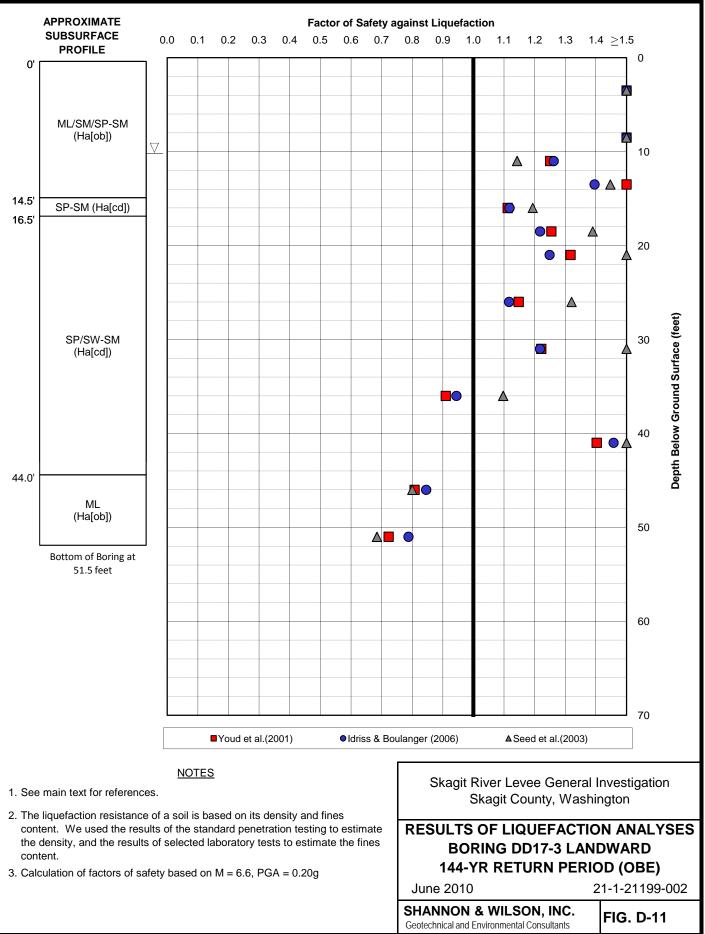


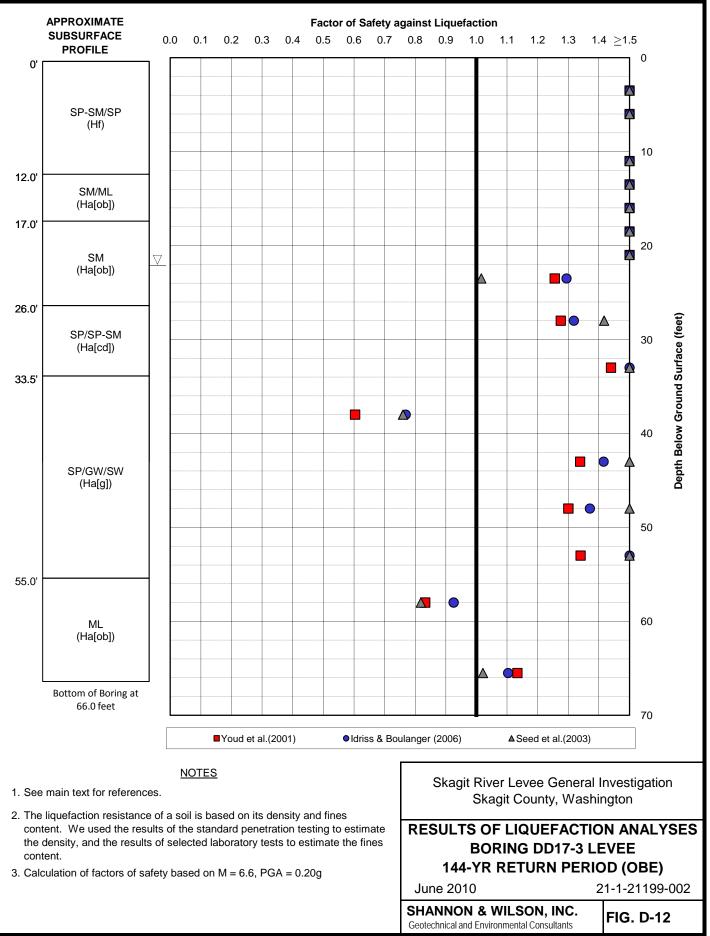


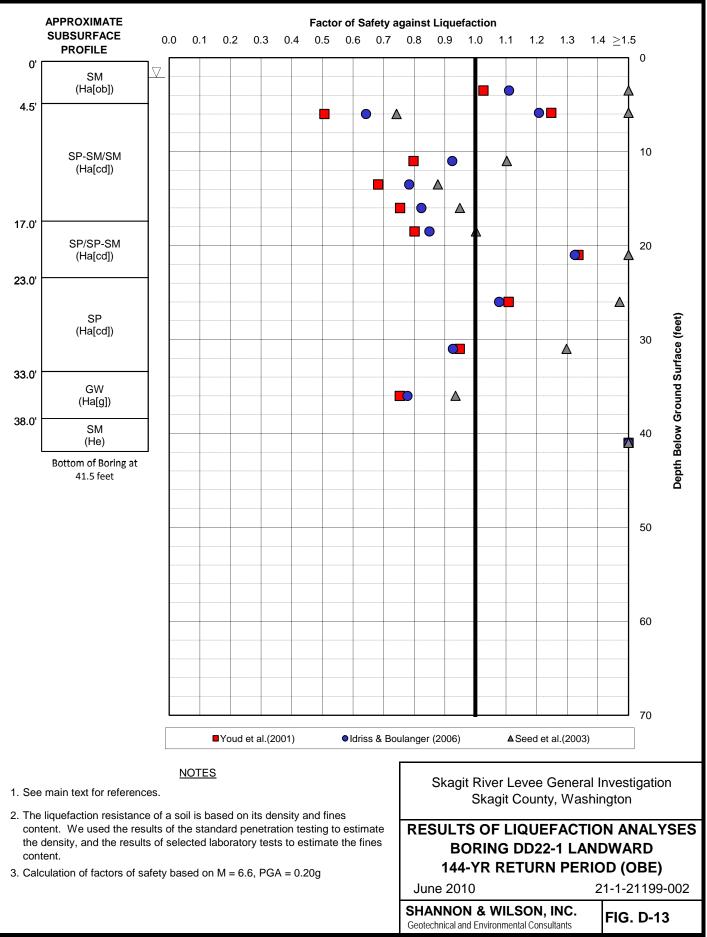


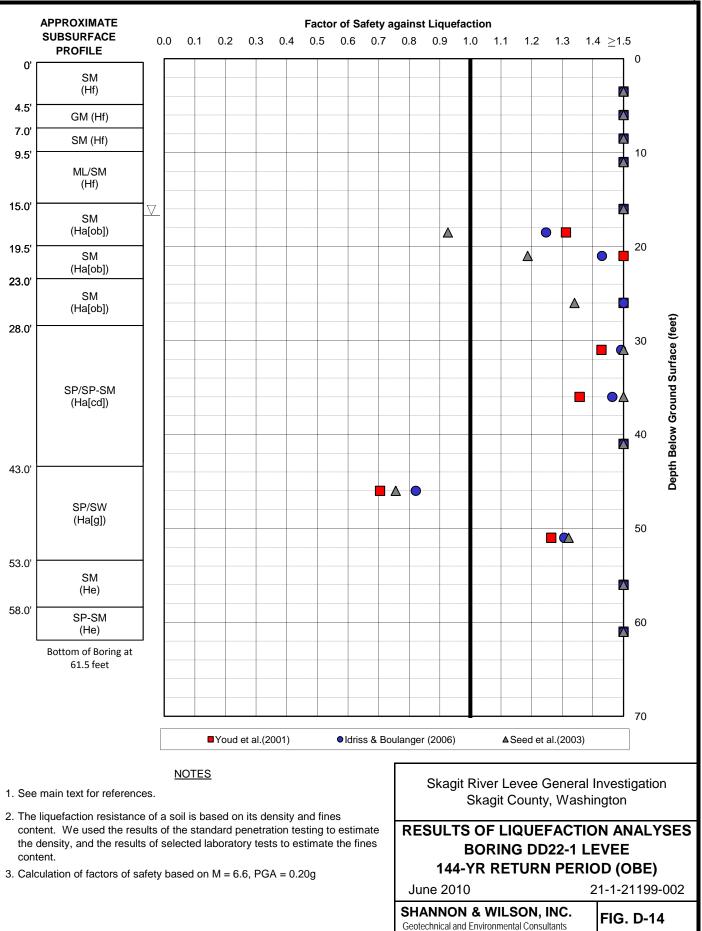


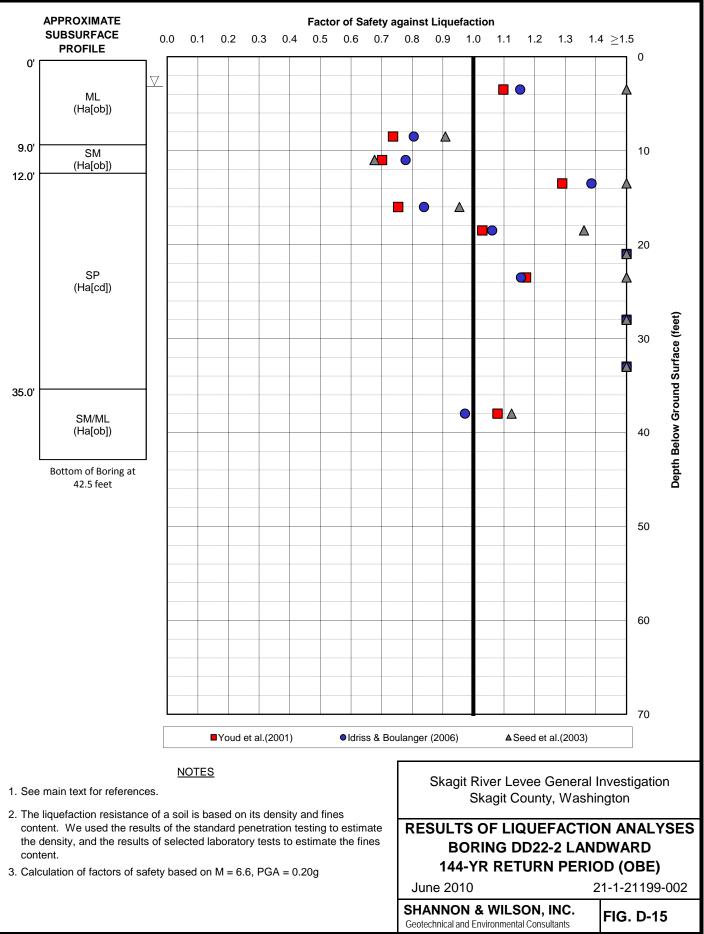


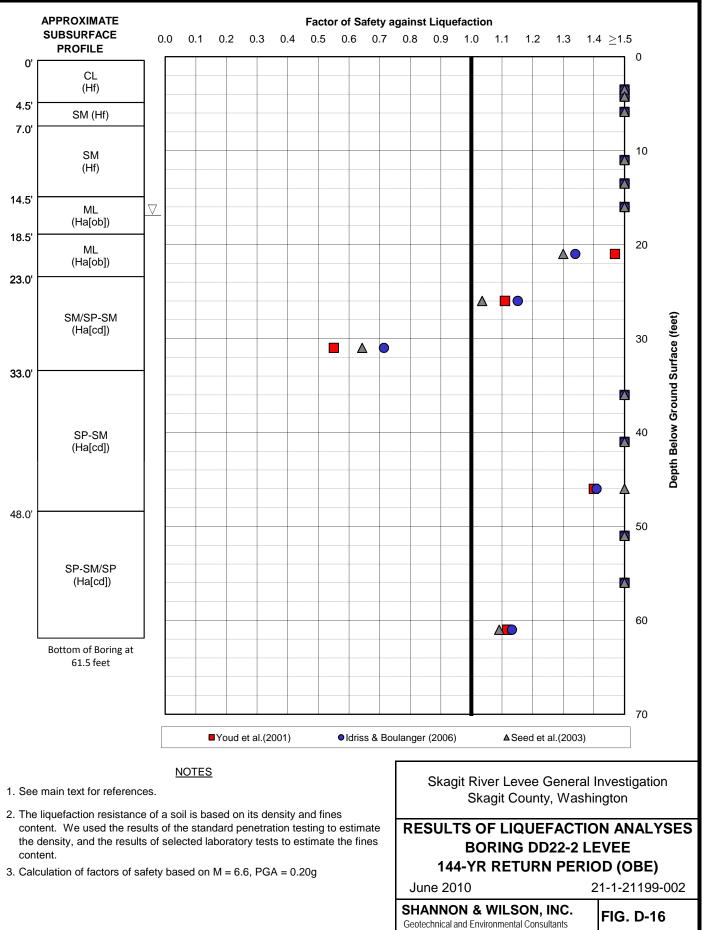


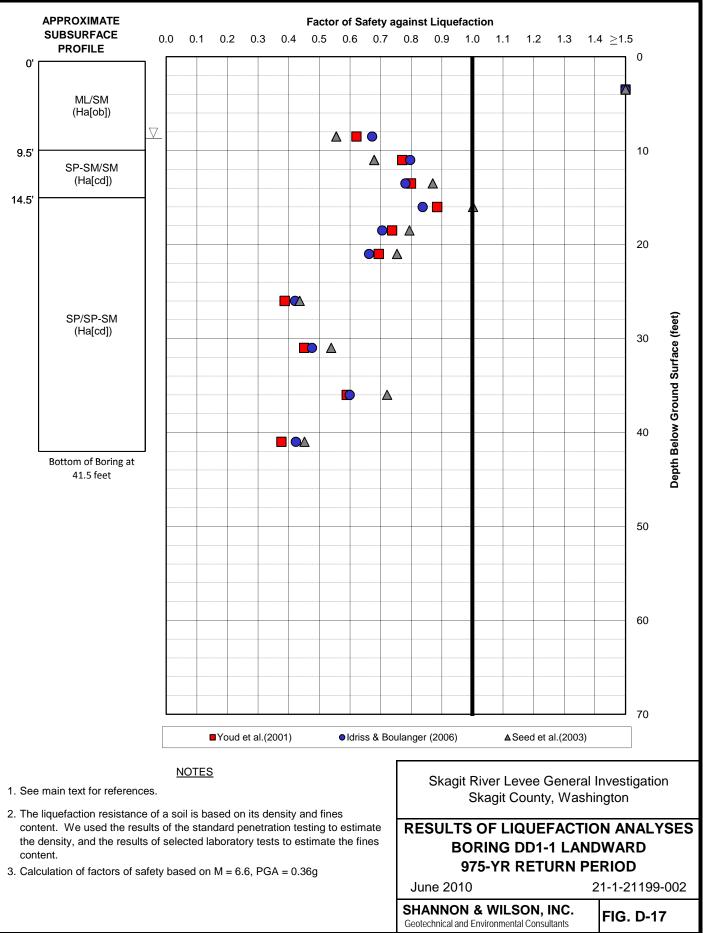


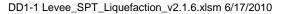


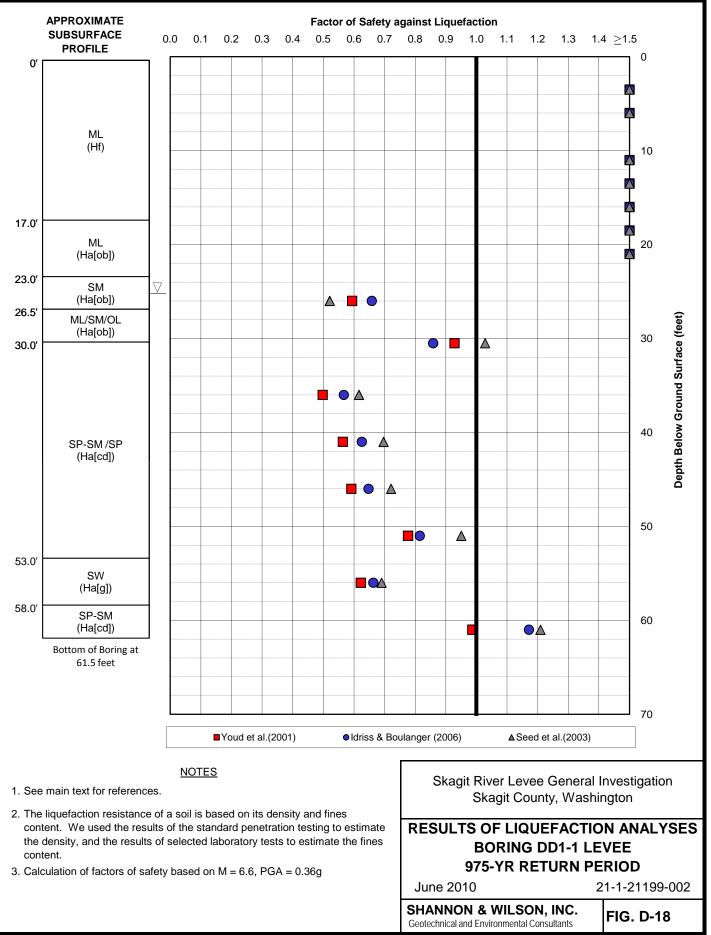


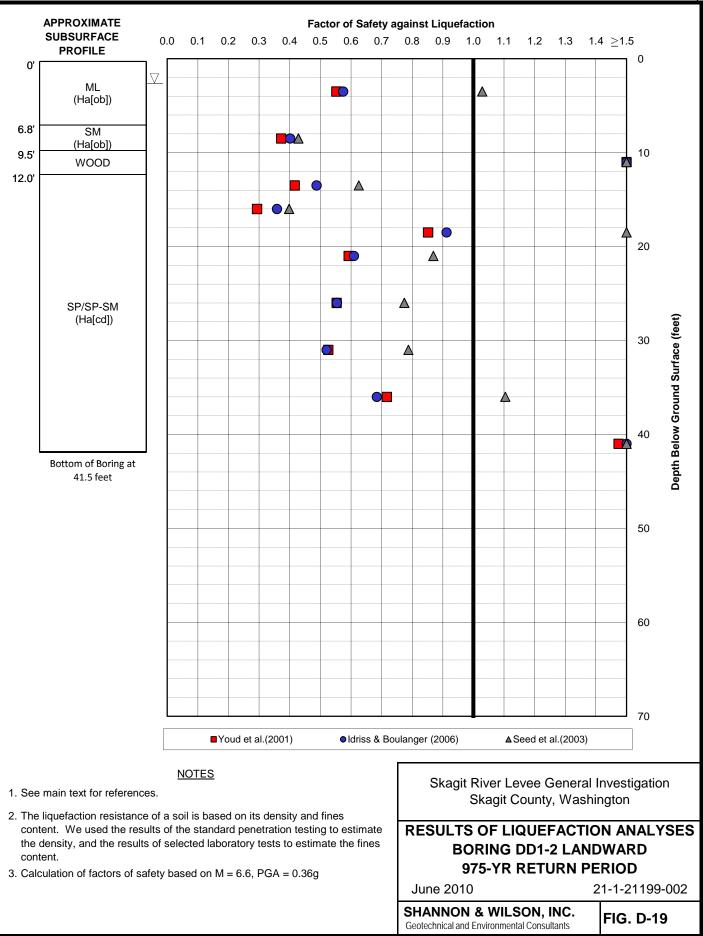




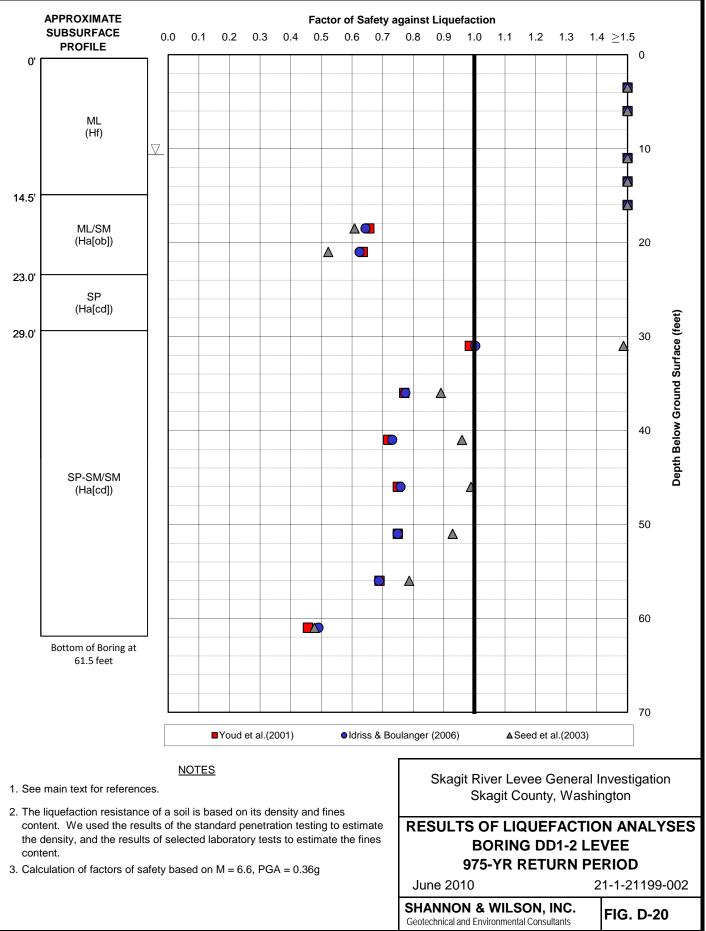


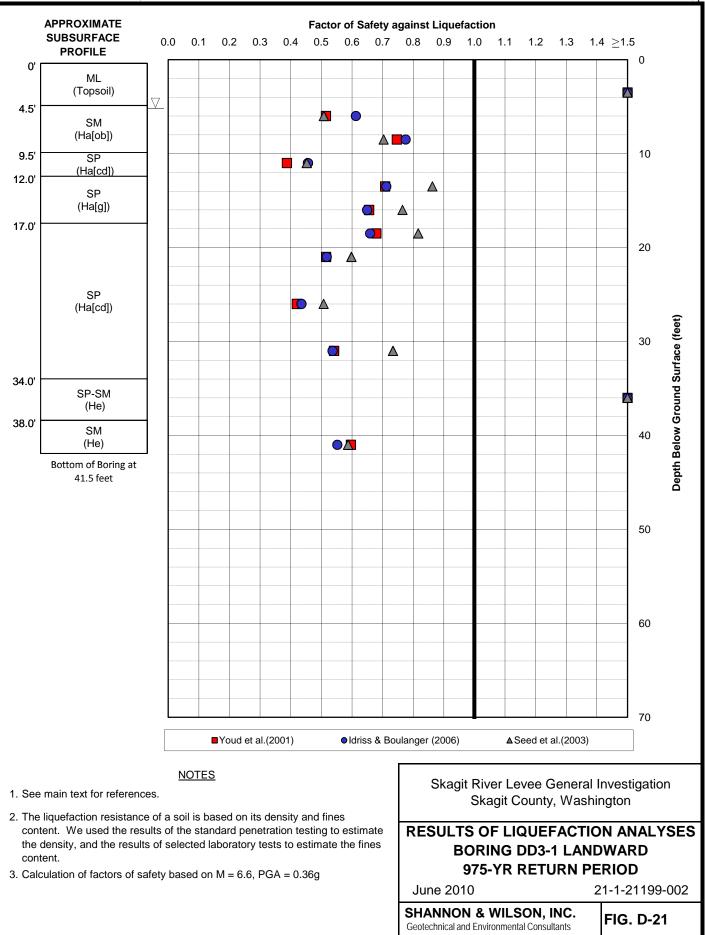


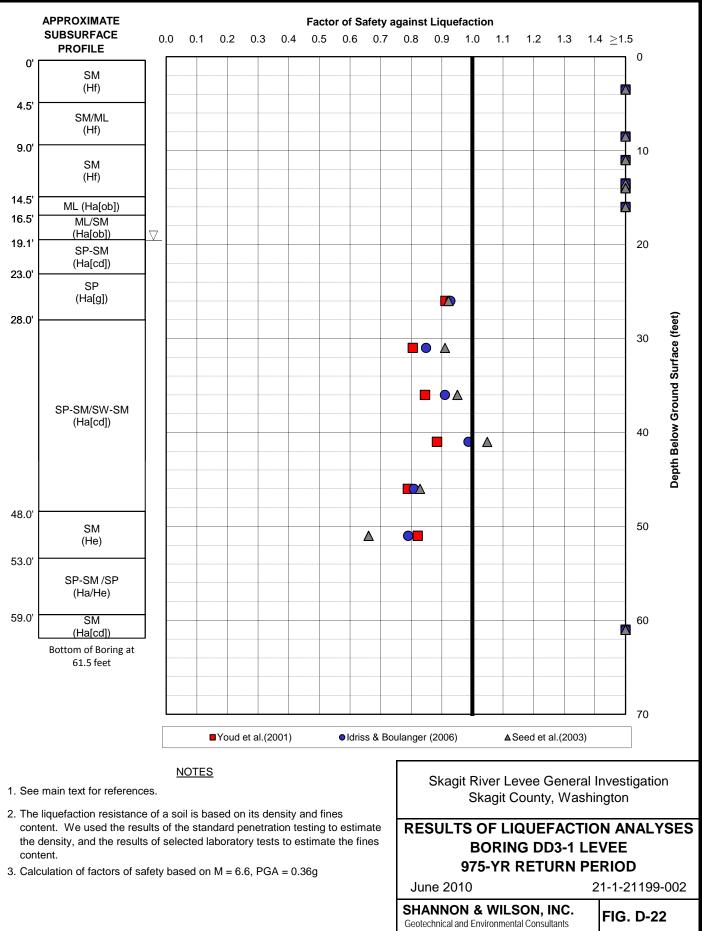


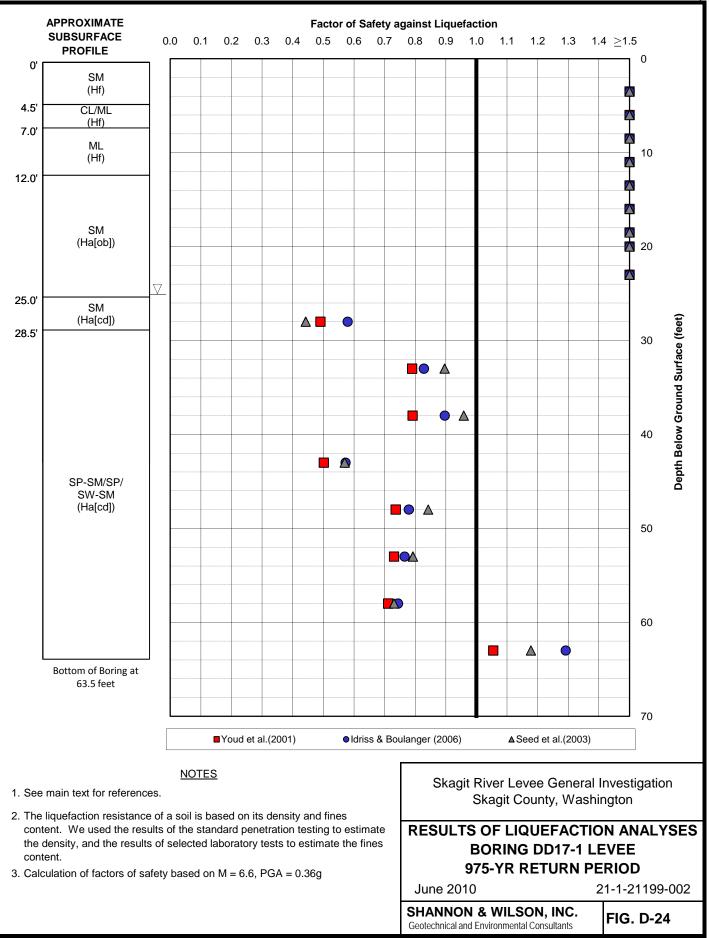


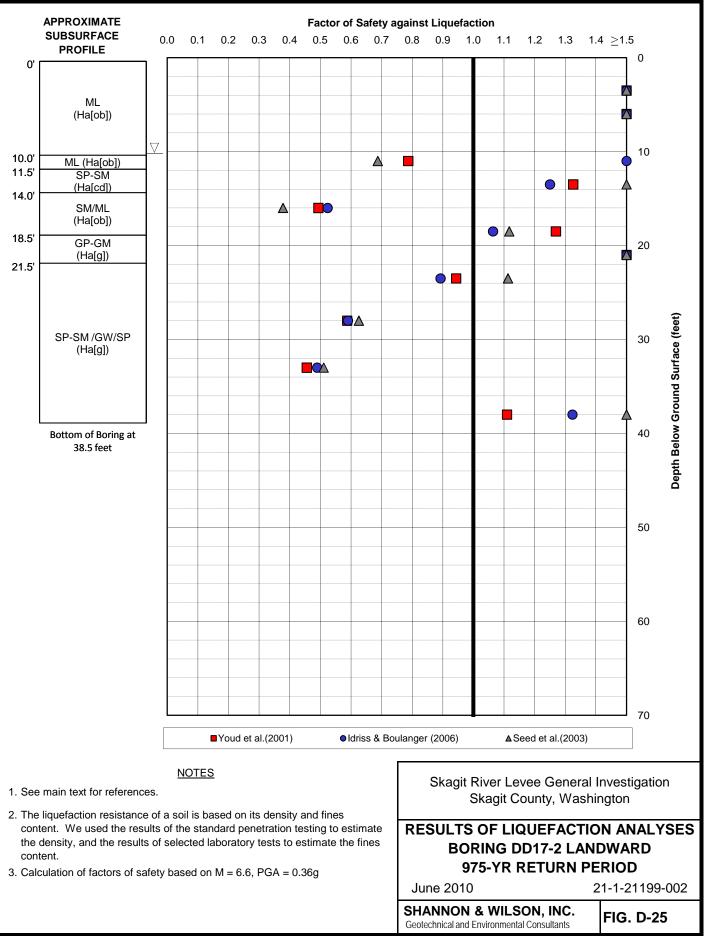


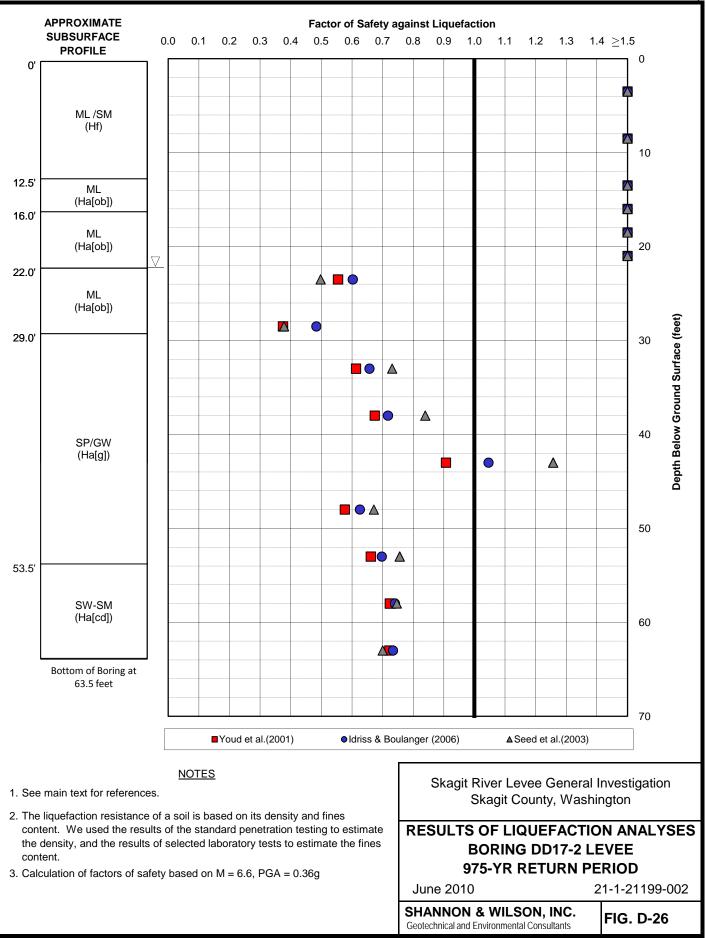


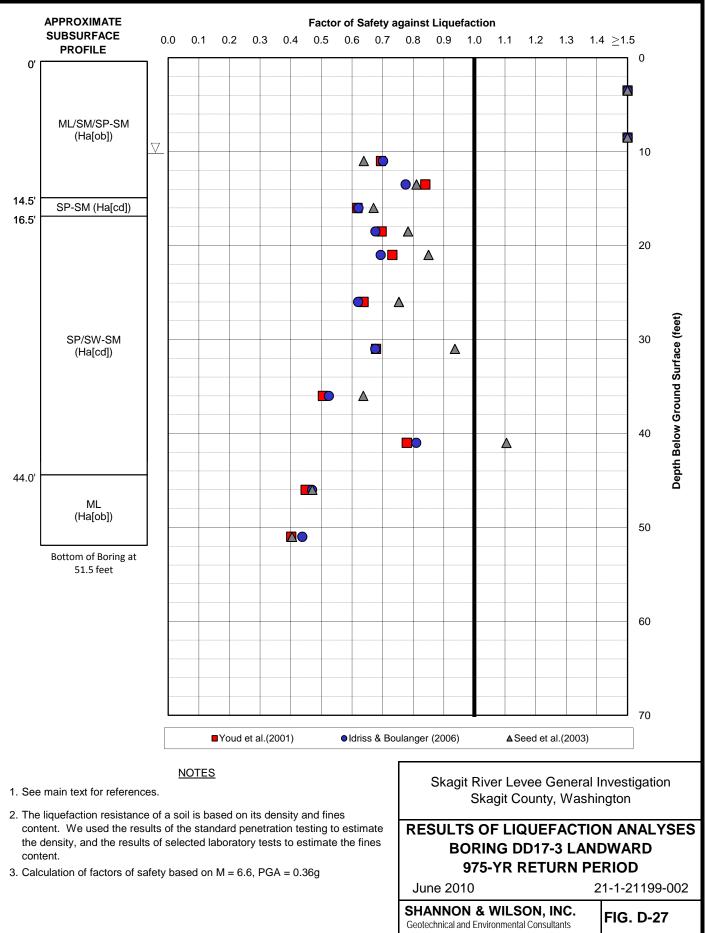


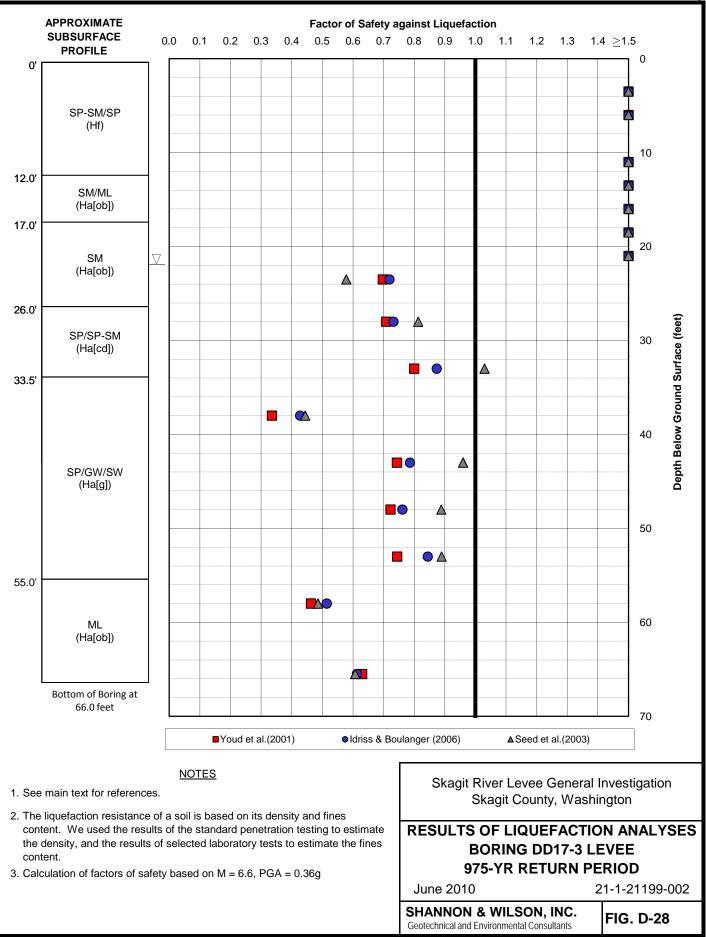


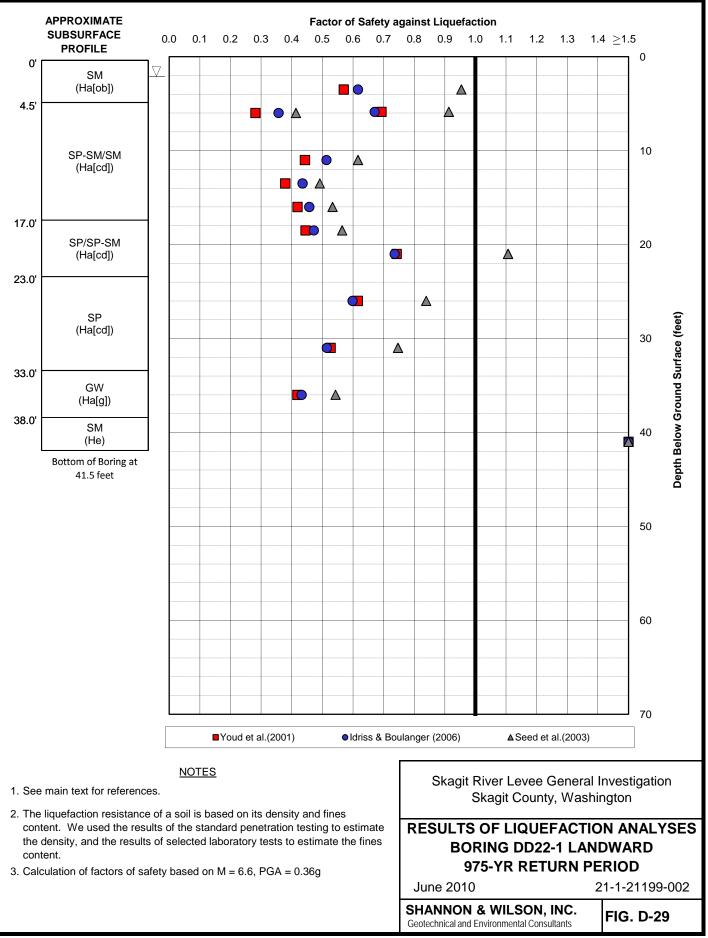


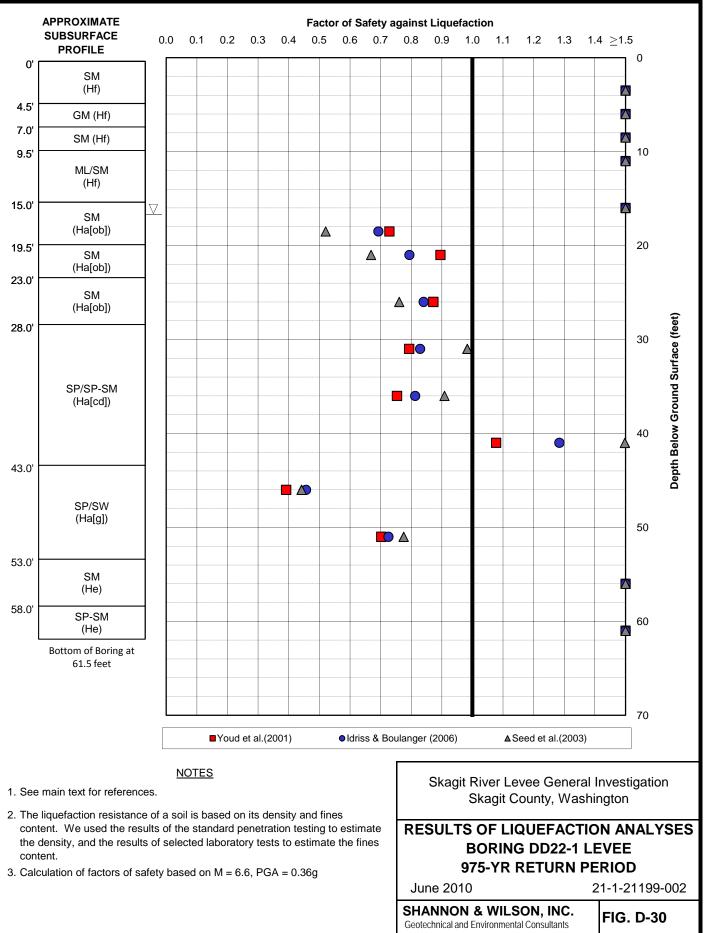


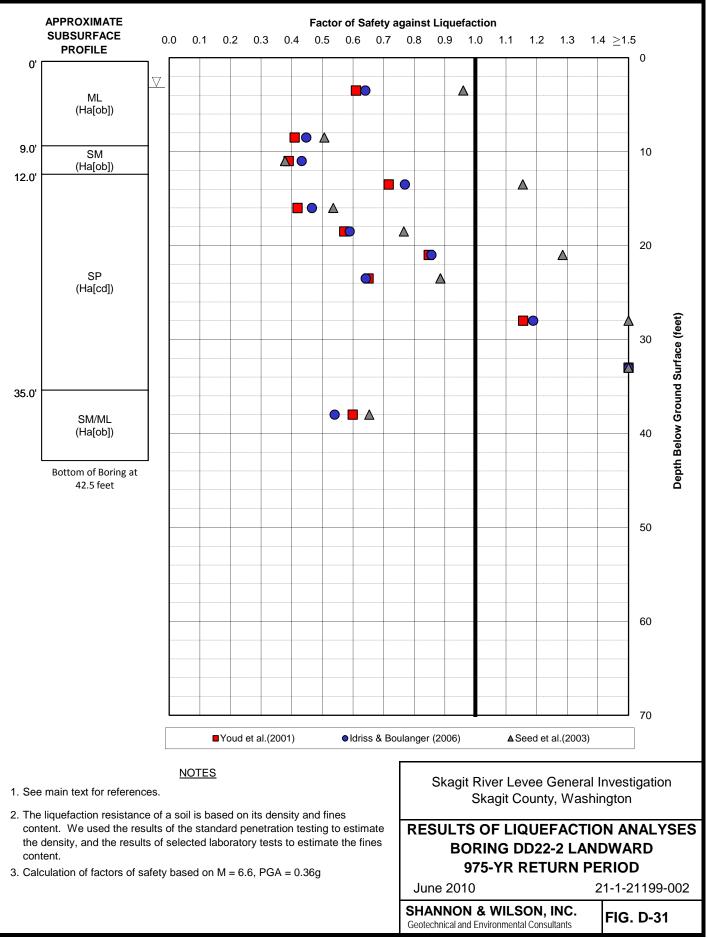


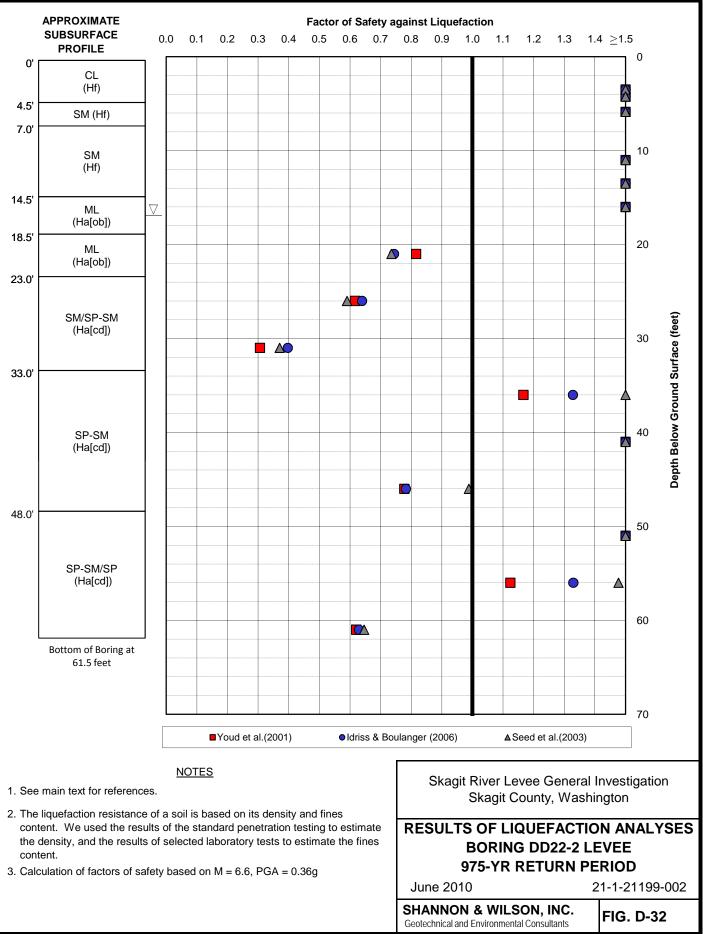



Cij








Cij

SHANNON & WILSON, INC.

APPENDIX E

IMPORTANT INFORMATION ABOUT YOUR GEOTECHNICAL/ENVIRONMENTAL REPORT

Attachment to and part of Report 21-1-21199-002

Date: June 18, 2010 To: Mr. Daniel E. Johnson

U.S. Army Corps of Engineers, Seattle District

IMPORTANT INFORMATION ABOUT YOUR GEOTECHNICAL/ENVIRONMENTAL REPORT

CONSULTING SERVICES ARE PERFORMED FOR SPECIFIC PURPOSES AND FOR SPECIFIC CLIENTS.

Consultants prepare reports to meet the specific needs of specific individuals. A report prepared for a civil engineer may not be adequate for a construction contractor or even another civil engineer. Unless indicated otherwise, your consultant prepared your report expressly for you and expressly for the purposes you indicated. No one other than you should apply this report for its intended purpose without first conferring with the consultant. No party should apply this report for any purpose other than that originally contemplated without first conferring with the consultant.

THE CONSULTANT'S REPORT IS BASED ON PROJECT-SPECIFIC FACTORS.

A geotechnical/environmental report is based on a subsurface exploration plan designed to consider a unique set of project-specific factors. Depending on the project, these may include: the general nature of the structure and property involved; its size and configuration; its historical use and practice; the location of the structure on the site and its orientation; other improvements such as access roads, parking lots, and underground utilities; and the additional risk created by scope-of-service limitations imposed by the client. To help avoid costly problems, ask the consultant to evaluate how any factors that change subsequent to the date of the report may affect the recommendations. Unless your consultant indicates otherwise, your report should not be used: (1) when the nature of the proposed project is changed (for example, if an office building will be erected instead of a parking garage, or if a refrigerated warehouse will be built instead of an unrefrigerated one, or chemicals are discovered on or near the site); (2) when the size, elevation, or configuration of the proposed project is altered; (3) when the location or orientation of the proposed project is modified; (4) when there is a change of ownership; or (5) for application to an adjacent site. Consultants cannot accept responsibility for problems that may occur if they are not consulted after factors which were considered in the development of the report have changed.

SUBSURFACE CONDITIONS CAN CHANGE.

Subsurface conditions may be affected as a result of natural processes or human activity. Because a geotechnical/environmental report is based on conditions that existed at the time of subsurface exploration, construction decisions should not be based on a report whose adequacy may have been affected by time. Ask the consultant to advise if additional tests are desirable before construction starts; for example, groundwater conditions commonly vary seasonally.

Construction operations at or adjacent to the site and natural events such as floods, earthquakes, or groundwater fluctuations may also affect subsurface conditions and, thus, the continuing adequacy of a geotechnical/environmental report. The consultant should be kept apprised of any such events, and should be consulted to determine if additional tests are necessary.

MOST RECOMMENDATIONS ARE PROFESSIONAL JUDGMENTS.

Site exploration and testing identifies actual surface and subsurface conditions only at those points where samples are taken. The data were extrapolated by your consultant, who then applied judgment to render an opinion about overall subsurface conditions. The actual interface between materials may be far more gradual or abrupt than your report indicates. Actual conditions in areas not sampled may differ from those predicted in your report. While nothing can be done to prevent such situations, you and your consultant can work together to help reduce their impacts. Retaining your consultant to observe subsurface construction operations can be particularly beneficial in this respect.

A REPORT'S CONCLUSIONS ARE PRELIMINARY.

The conclusions contained in your consultant's report are preliminary because they must be based on the assumption that conditions revealed through selective exploratory sampling are indicative of actual conditions throughout a site. Actual subsurface conditions can be discerned only during earthwork; therefore, you should retain your consultant to observe actual conditions and to provide conclusions. Only the consultant who prepared the report is fully familiar with the background information needed to determine whether or not the report's recommendations based on those conclusions are valid and whether or not the contractor is abiding by applicable recommendations. The consultant who developed your report cannot assume responsibility or liability for the adequacy of the report's recommendations if another party is retained to observe construction.

THE CONSULTANT'S REPORT IS SUBJECT TO MISINTERPRETATION.

Costly problems can occur when other design professionals develop their plans based on misinterpretation of a geotechnical/environmental report. To help avoid these problems, the consultant should be retained to work with other project design professionals to explain relevant geotechnical, geological, hydrogeological, and environmental findings, and to review the adequacy of their plans and specifications relative to these issues.

BORING LOGS AND/OR MONITORING WELL DATA SHOULD NOT BE SEPARATED FROM THE REPORT.

Final boring logs developed by the consultant are based upon interpretation of field logs (assembled by site personnel), field test results, and laboratory and/or office evaluation of field samples and data. Only final boring logs and data are customarily included in geotechnical/environmental reports. These final logs should not, under any circumstances, be redrawn for inclusion in architectural or other design drawings, because drafters may commit errors or omissions in the transfer process.

To reduce the likelihood of boring log or monitoring well misinterpretation, contractors should be given ready access to the complete geotechnical engineering/environmental report prepared or authorized for their use. If access is provided only to the report prepared for you, you should advise contractors of the report's limitations, assuming that a contractor was not one of the specific persons for whom the report was prepared, and that developing construction cost estimates was not one of the specific purposes for which it was prepared. While a contractor may gain important knowledge from a report prepared for another party, the contractor should discuss the report with your consultant and perform the additional or alternative work believed necessary to obtain the data specifically appropriate for construction cost estimation always insulates them from attendant liability. Providing the best available information to contractors helps prevent costly construction problems and the adversarial attitudes that aggravate them to a disproportionate scale.

READ RESPONSIBILITY CLAUSES CLOSELY.

Because geotechnical/environmental engineering is based extensively on judgment and opinion, it is far less exact than other design disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. To help prevent this problem, consultants have developed a number of clauses for use in their contracts, reports and other documents. These responsibility clauses are not exculpatory clauses designed to transfer the consultant's liabilities to other parties; rather, they are definitive clauses that identify where the consultant's responsibilities begin and end. Their use helps all parties involved recognize their individual responsibilities and take appropriate action. Some of these definitive clauses are likely to appear in your report, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to your questions.

The preceding paragraphs are based on information provided by the ASFE/Association of Engineering Firms Practicing in the Geosciences, Silver Spring, Maryland