

Skagit River Hydrology

Performed by Bill Cronin and Loren Jangaard, USACE Technically Reviewed by Ken Brettmann, USACE Presented and Backchecked by Ted Perkins

Skagit River Hydrology

- Definition and Objective
- Weather Patterns
- Streamflow Analysis
- Limits of Flood Control
- Questions

Skagit River Hydrology Definition and Objective

Cards Cha Occ		ance of currence	Recurrence		Flood Event		
3 Clubs		1 in 52		1.9%		52-year	
3 or 4 Clubs 1		1 ir	n 26	3.8%		26-year	
	Flood Event 10-year 100-year		Recurrence 10% 1%		Chance of Occurrence		
					1 in 10 1 in 100		
	500-year		0.2%		1 in 500		

How many cards are in the Hydrology deck?

Weather Patterns

•There are a lot of cards in the deck so need a long period of record

Hydrologic Record

- Long Period of Record
- Consistent human influence record
- Consistent natural influence record
- Location

- Rank Flood
 Events
- Plot Data
- Peak, 1-day,
 3-day, 7-day

Gage Assessment

Data Type	Mount Vernon	Sedro-Woolley	Concrete
Peak	1940-present	1896-7, 1906, 1908-22, 1975-9	1897, 1909, 1917, 1921, 1924-present
Daily	1940-present	1908-23, 1975-80	1924-present
Years	58	22, 16	78, 74
Problems	Changed Watershed, Dam Influence, Attenuation	Slightly Changed Watershed, Dam Influence, Attenuation	Dam Influence

•Concrete Gage Has the Longest Consistent Record

•All Gages are Used to Verify Results

The Impact of Volume on Peaks

The Volume of Water at Concrete is Accounted for Downstream
Longer Duration Flood Creates Higher Peak Downstream

The Impact of Volume on Peaks

•The Volume of Water at Concrete is Accounted for Downstream

Shorter Duration Flood Results in Lower Peak Downstream

Influence of Dams

Year	Dam	Note	
1924	Low Gorge	First Built	
1954	Ross	Flood Storage	
1956	Upper Baker	Flood Storage	
1977	Upper Baker	Added Flood Storage	

With Dams Frequency Curve

- Concrete Dam Influenced Data (1956-97)
- Control flow when expected to exceed 90,000 cfs at Concrete
- From 1956-77, only 2 events are regulated (11/20/62-114,000 cfs, 12/4/75 – 122,000 cfs)

40 year Record of Dam Controlled Peak Flows

Determine Relationship between Pre-Dam and Post-Dam Flows

- Determine Dam Inflows
- Determine Local Flows Between Dams and Concrete
- Route to get Without Dam Flow at Concrete
- Perform Frequency Analysis

A Longer Period of Record is Developed for the Without Dam Condition

Without Dam Flows at Concrete

- Determine Upper Without Dam Frequency Events
- Correlate to Dam Inflows
- Set Up Reservoir Model to Current Conditions
- Route these inflows through dams, add in local to determine peaks at Concrete

We can route large hypothetical floods through dams

Development of Regulated Frequency Curves

 Add Routed Peaks to Regulated Frequency Curve

A Longer With Dam Record is Developed

DAY INFLOW TO ROSS RESERVOIR (cfs

Skagit River at Concrete Peak Flows

Recurrence	Instantaneous	1-day	3-day	
	Peak	Peak	Peak	
	(cfs)	(cfs)	(cfs)	
10-year	124,000	116,000	97,000	
25-year	150,000	138,000	107,000	
50-year	185,000	170,000	132,000	
100-year	222,000	204,000	159,000	
500-year	344,000	319,000	250,000	

Hypothetical Hydrographs

Perform Frequency Analyses on Tributary Flows (i.e. Finney, Nookachamps) to add in flow to hydraulic model

1975 Simulated vs. Observed Hydrograph at Mount Vernon Gage

Hydraulic Model is Calibrated to Downstream Gage Data

Limits of Flood Control				
Location	Drainage Area (mi ²)	% of Mount Vernon		
Mount Vernon	3,093		SKAGIT BASIN DRAINAGE AREA PIE CHART	
Above Upper Baker and Ross Dams	1,214	39%	UNREGULA TED DRAINAGE A REA 61%	
Below Dams	1,879	61%	61% of Flow is Uncontrolled	

Skagit River Hydrology

Performed by Bill Cronin and Loren Jangaard, USACE Technically Reviewed by Ken Brettmann, USACE Presented and Backchecked by Ted Perkins

