Wetlands Site Assessment: Dike District 12 Levee Certification
(PL12 – 0207)

Prepared for:

Skagit County Dike, Drainage and Irrigation District 12
C/O John Semrau, PE, PLS
Semrau Engineering and Surveying, PLLC
2118 Riverside Drive, Suite 208
Mount Vernon, WA 98273-5454

Prepared by:

Graham-Bunting Associates
Environmental & Land Use Services
3643 Legg Road, Bow, WA 98232
Ph. 360.766.4441 Fx. 360.766.4443

November 8, 2012
Table of Contents

Section ... page

Summary ... ii

1. Introduction .. 1
2. Existing Condition .. 1
3. Existing Information .. 3
 3.1 National Wetland Inventory 3
 3.2 Soil Survey of Skagit County 3
 3.3 Priority Habitats and Species Data Base 4
4. Project Description .. 5
5. Site Investigation ... 5
 5.1 Wetland Definition ... 5
 5.2 Wetland Parameters ... 5
 5.2.1 Wetland Hydrology 5
 5.2.2 Hydric Soils .. 6
 5.2.3 Hydrophytic Vegetation 6
 5.3 Data Collection ... 6
 5.4 Gages Slough .. 6
 5.5 Side Channel and Skagit River 6
 5.6 Isolated Wetland and Wetland Mosaic 7
 5.7 Wetland Ratings and Functions 10
6. Regulatory Analysis ... 10
 6.1 Riparian Buffers ... 11
 6.1.1 Skagit River ... 11
 6.1.2 Gages Slough .. 11
 6.2 Wetland Buffers ... 11
 6.2.1 Wetland A ... 11
 6.2.2 Wetland B ... 12
 6.3 Buffer Width Averaging 12
7. Summary and Conclusion .. 13
8. Closure ... 13
9. References .. 14

Attachments

A ... Vicinity Map
B ... Wetland Determination Data Forms
C ... Wetland Delineation Site Plan
D ... Wetland Rating Forms
E ... Buffer Averaging Site Plan
Summary

Applicant:
Graham-Bunting Associates
Semrau Engineering and Surveying, PLLC
2118 Riverside Drive, Suite 208
Mount Vernon, WA 98273-5454

Site:
The project area is located along the right bank of the Skagit River extending from Lafayette Road in the north to Gardner Road in the south within Section 4, Township 34 North Range 4 East and Section 33 Township 35 North, Range 4 East, W.M., Skagit County, Washington.

Areas Assessed:
- Gages Slough: Type F (Fish Habitat)
- Skagit River and Side Channel: Type S (Shoreline)
- Category IV Wetland
- Category I Wetland

Project:
The subject proposal is to enlarge both the width and height of the existing Skagit River levee along the entire 1.53 mile project site. The project extends from the Burlington city limits at Gardner Road north to the Terminus of the Burlington Northern Santa Fe Railroad on Lafayette Road in the north. The top of levee will be extended approximately 4 feet in height and the toe width will be increased approximately 60 feet landward of the existing toe. Construction will occur on top and landward of the existing levee.

Critical Area Impact:
Proposed expansion has been designed to “avoid” critical area impacts by expanding in a landward direction (landward) from the existing levee. Category IV Wetland (Wetland A) of 2,954 square feet will be filled as a result of project related activities. Buffer of Category I wetland (Wetland B) will be reduced by 0.58 acres.

Regulatory Guidance:
- Skagit County Critical Areas Ordinance (SCC 14.24)
- SCC 14.24.520 Fish and Wildlife Site Assessment Requirements
- SCC 14.24.220 Wetland Site Assessment Requirements
- SCC 14.26 Shoreline Management Master Program

Recommendations:
Fill associated with Wetland A should be addressed through jurisdictional substitution pursuant to SCC 14.24.040 (3).

Buffer averaging pursuant to SCC 14.24.240 (2) should be utilized to decrease the standard buffer for Wetland B in areas of cleared pasture landward of the existing levee while increasing the buffer in a mixed forest canopy waterward of the levee.
1. Introduction
At the request of Mr. John Semrau, Graham-Bunting Associates (GBA) have conducted a site investigation and prepared the following assessment addressing regulated wetlands relative to levee modifications being proposed by Dike District 12. The report includes a characterization of existing conditions, project description, review of existing resource data sources, a summary of our investigative procedures and findings, wetland rating and mitigation recommendations consistent with Section 14.24.230 of the Skagit County Critical Areas Ordinance (CAO). The report also considers fish and wildlife habitat conservation areas as addressed under Section 14.24.500 of the CAO. In light of federal and state review conducted by the U.S. Army Corps of Engineers, U.S. Fish and Wildlife and National Marine Fisheries Services and the Washington State Departments of Fish and Wildlife and Ecology, species and habitat review has been satisfied through jurisdictional substitution under Subsection 14.24.040 (3) of the CAO.

2. Existing Conditions
The project area is located along the right bank of the Skagit River extending from Lafayette Road in the north to Gardner Road in the south within Section 4, Township 34 North Range 4 East and Section 33 Township 35 North, Range 4 East, W.M., Skagit County, Washington.

The project site consists of the existing right bank levee of the Skagit River, farmland landward of the levee and a mix of uplands and wetlands waterward of the levee. The levee is managed and maintained by Skagit County Dike, Drainage and Irrigation District Number 12. The levee ranges from approximately 8 to 12 feet in height (measured from toe to top) and 80 feet in width (measured toe to toe). The centerline of the levee is located approximately 100 feet from the river at
its closest point in the north and approximately 1,100 feet from the river at its furthest point in the south. The project site includes five distinct aquatic features listed below from north to south:

1. Gages Slough - Gages Slough is located along the northern portion of the site and is separated from the project site by Lafayette Road. The slough receives its hydrologic charge from a culvert leading from the north end of a forested wetland at Hart Island and is seasonally flooded from October through May. The portion of the slough adjacent to the project site is vegetated with a thicket of scrub shrub and tree species dominated by willow (*Salix spp.*) and alder (*Alnus rubra*).

2. Side Channel of Skagit River - The existing levee extends from Lafayette Road east to a side channel of the Skagit River. The side channel floods discharging to the mainstem Skagit during high flows. The bottom of the channel is vegetated with a vigorous community of water pepper (*Polygonum hydropiperoides*). The landward bank and area between the channel and Skagit River itself consists of a deciduous forest dominated by cottonwood (*Populus balsamifera*), willow, and alder.

3. Skagit River - The Skagit River extends from the side channel south to Gardner Road and exhibits natural and armored banks. The armored banks include areas which are vegetated with Himalayan blackberry (*Rubus discolor*) willow and Japanese knotweed (*Polygonum cuspidatum*) which is subject to eradication as an invasive species. Areas of natural banks, along the southern portion of the project site exhibit plant communities similar to those described in conjunction with the description of the side channel (above).

4. Isolated Wetland - A small linear wetland resembling a ditch segment is located landward (west) of the toe of the existing levee in a field utilized historically as a source of fill material for levee construction and maintenance. (Note: Use of the term “isolated” throughout this report is not intended to suggest a jurisdictional determination)

5. Wetland Mosaic - The area between the existing levee and the Skagit River consists of a mix of uplands and wetlands characterized as a wetland mosaic. Uplands are dominated by reed canarygrass (*Phalaris arundinacea*), meadow fescue (*Festuca pratensis*), alder and mitigation plantings consisting of conifers and deciduous trees including western red cedar (*Thuja plicata*), shore pine (*Pinus contorta*), Douglas fir (*Pseudotsuga menziesii*), and big leaf maple (*Acer macrophyllum*). Wetlands are dominated by willow, alder, reed canarygrass, water pepper and hard-stemmed bulrush (*Scirpus acutus*).
3. Existing Information

The subject property has been addressed under a number of existing studies. The relevant information sources have been reviewed and synthesized to assist GBA in characterizing the subject property. The sources are summarized as follows:

3.1 National Wetland Inventory - The National Wetland Inventory (NWI) is compiled by the U.S. Department of Interior’s Fish and Wildlife Service. NWI relies upon visual aerial photo interpretation of wetland indicators including hydrologic, vegetation and topographic signatures. Wetland areas identified under NWI are also classified in accordance with the Cowardin classification system which characterizes wetlands, in part, through hydrologic regime, vegetation type and location within the landscape. The following wetlands are identified and classified within the project area:

- Gages Slough is identified as a palustrine forested seasonally flooded (PFOC) wetland
- Side Channel and area contiguous to the Skagit River in southern project area are identified as palustrine scrub shrub seasonally flooded (PSSC) wetlands
- Forested areas separating side channel from Skagit River in north and area adjacent to Gardner Road in south are designated as a palustrine forested temporarily flooded (PFOA) wetlands
- Sand bar in southern project area (known locally as Johnson Bar) is identified as a riverine lower perennial unconsolidated shore seasonally flooded (R2USC) wetland.
- Two areas along waterward toe of levee in southern project area are identified as palustrine emergent seasonally flooded (PEMC) wetlands.

GBA utilize NWI only as a generalized map indication of the possible presence and extent of wetlands. Wetland delineations are always based on a site-specific analysis.

3.2 Soil Survey of Skagit County - The Soil Survey is compiled by the Natural Resource Conservation Service and includes mapped soil units registered to detailed descriptions of soil characteristics. The survey maps five soil units within the property boundaries:

56 Field silt loam is mapped over portions of the northern project area adjacent to Gages Slough and the side channel. These areas are not protected by the existing levee. The Field map unit is a very deep, moderately well drained soil found on flood plains. Permeability of the soil is moderate and available water capacity is high. Effective rooting depth is limited by a seasonal high water table ranging from 24 to 48 inches from November through May. The Field soil is not included on the local hydric soil list. Hydric components consisting of Skagit and Sumas soils are included in the map unit under criteria 2B3.

57 Field silt loam, protected is mapped over a portion of the southern project area on the landward or protected side of the levee. The Field map unit is a very deep, moderately well drained soil found on flood plains. Permeability of the soil is moderate and available water capacity is high. Effective rooting depth is limited by a seasonal high water table ranging from 36 to 48 inches from November through May. The water table has been lowered by drainage activities including ditching of a farmland. The Field (protected) soil is not included on the local hydric soil list. Hydric components consisting of Skagit and Sumas soils are included in the map unit under criteria 2B3.

105 Pilchuck Variant fine sandy loam is mapped over a terrace of the southern project area waterward of the existing levee and landward of the Skagit River. The Pilchuck Variant unit is a
very deep, moderately well drained soil typically found on terraces and levees. Permeability of the Pilchuck Variant soil is moderately rapid and available water capacity is moderate to moderately high. Effective rooting depth is limited by a seasonal high water table ranging from 48 to 60 inches from November through May. The soil is subject to occasional brief period of flooding from November to April. The Pilchuck Variant soil is not included on the local hydric soil list although isolated (hydric) wet spots may exist within the unit boundaries.

118 Sedrowooley silt loam is mapped over a portion of the central project area both landward and waterward of the existing levee. The Sedrowooley unit is a very deep moderately well drained soil found on alluvial terraces. Permeability of the soil is moderate and available water capacity is high. A seasonal high water table is present in the unit ranging from 36 to 60 inches from November to April. The Sedrowoolley soil is not included on the local hydric soil list although isolated (hydric) wet spots may exist within the unit boundaries.

Hydric inclusion found within the Field map units are identified as hydric under criteria 2B3 as follows:

2. Soil in Aqua suborders, great groups, or subgroups, Labels suborder, Aquisalids, Pachic subgroups, or Cumulic subgroups that are:
 B) poorly drained or very poorly drained and have either:
 (3) water table equal to 1.0 feet from the surface during the growing season if permeability is less than 6.0 inches/hour in any layer within 20 inches.

3.3 Priority Habitats and Species Data Base - The Priority Habitats and Species (PHS) Database maintained by the Washington Department of fish and Wildlife (WDFW) was reviewed to determine the presence of Federal and State endangered, threatened, sensitive, and candidate species and habitats of special importance. PHS lists a number of aquatic habitat types which are
generally consistent with designations identified under the National Wetland Inventory. In addition habitat areas are identified on adjacent agricultural lands (Gages Slough, North) utilized by wintering concentrations of trumpeter swans (*Olor buccinator*) and tundra swans (*Olor columbianus*). Biotic detection of a gray wolf (*Canis lupus*) was documented within the project vicinity in 1993.

All five species of Pacific salmon occur in the Skagit River and utilize the project area including Chinook (*Oncorhynchus tshawytscha*) listed as threatened under the Federal Endangered species Act (ESA). Puget Sound Steelhead (*Oncorhynchus mykiss*) also listed as threatened under the ESA utilize the project area. In addition to chinook and steelhead, bull trout (*Salvelinus confluentus*), listed as threatened under the ESA are documented in the project area.

4. Project Description
The subject proposal is to enlarge both the width and height of the existing Skagit River levee along the entire 1.53 mile project site. The project extends from the Burlington city limits at Gardner Road north to the Terminus of the Burlington Northern Santa Fe Railroad on Lafayette Road in the north. The top of levee will be extended approximately 4 feet in height and the width will be increased approximately 60 feet landward of the existing toe. Construction will occur on top and landward of the existing levee. The project is proposed by Skagit County Dike, Drainage and Irrigation District Number 12 for the purpose of protecting lives and property from Skagit River flooding. Detailed plans have been submitted to Skagit County Planning and Development Services in support of an application for a Shoreline Substantial Development Permit. A conceptual site plan is included as an attachment to this assessment. (Attachment A: Vicinity Map)

5. Site Investigation
GBA utilized the 1987 Corps of Engineers Wetland Delineation Manual (Technical Report Y-87-1) in the preparation of this report. The Corps Manual and Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Western Mountains, Valley’s and Coast Region (Version 2.0/May 2010) represent the accepted standard for identifying and delineating wetlands for jurisdictional purposes under the Clean Water Act and for Skagit County for use in conjunction with the Growth Management Act mandated Critical Areas Ordinance.

5.1 Wetland Definition - The manual incorporates the Clean Water Act Definition of Wetlands as follows:

"Those areas that are inundated or saturated by surface or groundwater at a frequency and duration sufficient to support and that under normal circumstances do support a prevalence of vegetation typically adapted for life in saturated soil conditions. Wetlands generally include swamps, marshes, bogs and similar areas."

5.2 Wetland Parameters - The definition requires that three interrelated defining elements or parameters be established when identifying wetlands. These parameters are wetland hydrology, hydric soils and hydrophytic vegetation.

5.2.1 Wetland Hydrology - Water is the driving force, which creates and sustains wetlands. The 1987 Manual and subsequent Corps guidance identifies wetlands as areas where soils are inundated or continuously saturated for a minimum of 5% of the growing season (approximately 12.5 days for Western Washington). When direct observation of the water table cannot be made, hydrology is determined by relying upon hydrologic indicators such as hydric soil characteristics, water marks, drift lines, sediment deposits or drainage patterns.
5.2.2 Hydric Soils - Wetlands exhibit hydric soils. These are soils which are saturated, flooded or ponded long enough during the growing season to develop anaerobic conditions. These are conditions where no free oxygen is present in the upper soil horizons. Typical field indicators of hydric soils are the presence of a thick organic layer, or in predominantly mineral soils such as found on this site, a low chroma matrix (gray color) and/or bright mottling. Soil chromas are determined by comparing soil samples with color chips in the Munsell Color Charts.

5.2.3 Hydrophytic Vegetation - The U.S. Fish and Wildlife Service has classified wetland vegetation according to its frequency of occurrence in wetlands:

- Obligate wetland species (OBL) occur in wetlands greater than 99% of the time.
- Facultative wetland species (FACW) occur in wetlands greater than 67% of the time.
- Facultative species (FAC) occur in wetlands 34%-66% of the time.
- Facultative upland species (FACU) occur in wetlands less than 34% of the time.
- Upland species (UPL) occur in wetlands less than 1% of the time.

Generally the hydrophytic vegetation parameter is satisfied when greater than 50% of the species present at an observation point have an indicator status of OBL, FACW and/or FAC; when two or more dominant species have observed morphological or known physiological adaptations for occurrence in wetlands; or when other indicators of hydrophytic vegetation are present. Because the site has been manipulated through regular tilling associated with agricultural production, GBA considered and utilized a modified disturbed site approach. The vegetation parameter was assumed to be satisfied at throughout the site.

5.3 Data Collection - GBA assessed the project area during the drought of late summer/early fall of 2012 during (August and October) in two phases.

Phase 1 was conducted on August 20, 2012. The project area (area within 300 feet of proposed project activities) was traversed and site conditions were documented in field notes and photographs. Gages Slough was observed to be functionally isolated from the project site by Lafayette Road. Gages Slough is located west of the road and the project site is on the east. Additionally the side channel discussed under existing conditions was observed to be hydrologically connected to the Skagit River. Because of very dry surface conditions areas exhibiting a predominance of hydrophytic vegetation were identified for further assessment.

Phase 2 was conducted on October 1 and 3, 2012. Gages Slough, located within the right of way of Lafayette Road was eliminated from further analysis pursuant to SCC 14.24.230 (5). The wetland edge associated with the side channel was determined to be coexistent with the ordinary high water mark (OHWM) of the Skagit River. The OHWM of the Skagit River was identified along the entire project site. Wetland data was collected at locations identified during Phase 1.

5.4 Gages Slough - Because Gages Slough is separated from the project site by Lafayette Road Skagit County may modify the required buffer width to end at the western roadway edge pursuant to SCC 14.24.230. The applicable provisions and criteria will be discussed further under the regulatory analysis contained in subsection 7.1.2 of the Regulatory Analysis.

5.5 Side Channel and Skagit River - The OHWM associated with the side channel of the Skagit River was identified in accordance with the Statutory Definition provided in the Shoreline Management Act (RCW 90.58) and the Skagit County Shoreline Management Master Program (SCC 14.26) as follows:
"Ordinary high water mark (OHWM) on all lakes, streams, and tidal water is that mark that will be found by examining the beds and banks and ascertaining where the presence and action of waters are so common and usual and so long continued in all ordinary years, as to mark upon the soil a character distinct from that of the abutting upland, in respect to vegetation as that condition exists on June 1, 1971 or as it may naturally change thereafter: PROVIDED, that in any area where the ordinary high water mark cannot be found, the ordinary high water mark adjoining salt water shall be the line of mean higher high tide and the ordinary high water mark adjoining fresh water shall be the line of mean high water."

The OHWM along the side channel was identified near the waterward toe of bank at the transition from herbaceous species consisting of obligate and facultative wetland species dominated by water pepper and reed canary grass to woody facultative wetland and facultative upland species dominated by Himalayan blackberry, alder and cottonwood. The OHWM was flagged OHWM 1 through OHWM 5. The OHWM of the Skagit River was identified at the transition from bare rock rip rap to woody vegetation dominated by Himalayan blackberry and willow.

Photo 3 – View north showing OHWM of side channel beneath pink flag at arrow.

Photo 4 – View north showing OHWM of Skagit River at arrow.

The OHWM of the side channel connects to the OHWM of the Skagit River at its point of discharge to the river. The OHWM of the side channel and the river are at the same approximate elevation. The OHWM along the armored river bank was identified on an aerial photograph attached to this report. The OHWM of the unarmored shoreline along the southern portion of the project site was not identified because contiguous wetlands supercede the riparian buffer and shoreline setback requirements. The landward boundary of the side channel/wetland was identified on site flagged as OHWM and surveyed. The boundary survey is identified on the attached aerial photograph.

5.6 Isolated Wetland/Wetland Mosaic - Transects were established through areas exhibiting a predominance of hydrophytic vegetation. Seven data points were established. Soil test pits were excavated to a depth of 21 inches. Hydrology, soil and vegetation were assessed at each point. Data collected is summarized on the following table. Additional data is contained on data forms attached to this report. (Attachment B: Wetland Determination Data Forms)
Table 1 - Wetland Data Summary Table

<table>
<thead>
<tr>
<th>DP</th>
<th>Hydrology</th>
<th>Soil</th>
<th>Dominant Vegetation</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>*Saturation @ surface - Water marks - Sediment deposits - Oxidized rhizospheres</td>
<td>*Silty clay loam - 2.5Y 5/2 - 5% redox 10YR 5/8 - Depleted matrix</td>
<td>*Populus balsamifera FAC (7%) Juncus effusus FACW (20%) Scirpus acutus OBL (10%) Phalaris arundinacea FACW (40%)</td>
<td>Wet</td>
</tr>
<tr>
<td>2</td>
<td>No indicators</td>
<td>Silt loam - 2.5Y 4/3 - No redox</td>
<td>*Populus balsamifera FAC (50%) Rubus discolor FACU (10%) Phalaris arundinacea FACW (100%)</td>
<td>Up</td>
</tr>
<tr>
<td>3</td>
<td>No indicators</td>
<td>Silt loam - 2.5Y 5/3 - No redox</td>
<td>*Phalaris arundinacea FACW (100%)</td>
<td>Up</td>
</tr>
<tr>
<td>4</td>
<td>No indicators</td>
<td>Silt loam - 2.5Y 4/3 - No redox</td>
<td>*Agrostis tenuis FAC (60%) Phalaris arundinacea FACW (30%)</td>
<td>Up</td>
</tr>
<tr>
<td>5</td>
<td>*Saturation @ 4" - Sediment deposits - Oxidized rhizospheres</td>
<td>*Fine sandy loam - 2.5Y 4/1 - 10% redox 10YR 5/8 - Redox dark surface</td>
<td>*Phalaris arundinacea FACW (100%)</td>
<td>Wet</td>
</tr>
<tr>
<td>6</td>
<td>*Saturation @ 6" - Oxidized rhizospheres</td>
<td>*Fine sandy loam - 10YR 4/1 - 20% redox 10YR 5/8 - Redox dark surface</td>
<td>*Phalaris arundinacea FACW (100%)</td>
<td>Wet</td>
</tr>
<tr>
<td>7</td>
<td>*Saturation @ surface - Oxidized rhizospheres</td>
<td>*Silty clay loam - 2.5Y 3/1 - 15% redox 5YR 4/6 - Redox dark surface</td>
<td>*Phalaris arundinacea FACW (100%) Thuja plicata FAC (20%)</td>
<td>Wet</td>
</tr>
</tbody>
</table>

*Wetland parameter satisfied

Based on assessment of the above data two wetlands were identified: A linear wetland (Wetland A) of approximately 2,954 square feet was identified in conjunction with data points 1, 2 and 3. The wetland is located at the landward (west) toe of the existing levee at the approximate mid point of the project site. The wetland is classified as palustrine emergent seasonally flooded and depressional under the Cowardin Classification and Hydrogeomorphic systems respectively. The wetland is shaped like an elongated isosceles triangle measuring approximately 30 feet wide in the south and tapering to a point approximately 150 to the north. Wetland data point (1) exhibited hydric soil indicators through surface saturation, sediment deposits and oxidized rhizospheres along living roots. Soil consisted of silty clay loam and displayed a dark depleted matrix chroma accompanied by bright mottles. Dominant plants included facultative and obligate wetland species. By contrast upland data points (2 and 3) were observed to be at a slightly higher elevation and did not exhibit any indicators of wetland hydrology. Soil matrix was lighter and not accompanied by redoximorphic features. While the soil parameter was satisfied, bulrush (OBL) observed at data point 1 was absent.
A wetland mosaic (Wetland B) of approximately 25.5 acres consisting of several vegetation classes was identified through assessment of data points 4 though 7. The wetland extends from a linear feature along the waterward (southeastern) toe of the existing levee in the northwest, southeast approximately 2,100 feet to a point near Gardner Road. The linear feature shown in Photo 8 is classified as an F (fish habitat) water of the State. The wetland mosaic is classified as palustrine emergent, palustrine forested and palustrine scrub shrub seasonally flooded under the Cowardin Classification System and emergent under the Hydrogeomorphic system. Wetland data points (5, 6, 7) exhibited saturation at or near the soil surface accompanied by sediment deposits and oxidized rhizospheres. Soil consisted of fine sandy loam and silty clay loam and displayed a very dark matrix chroma accompanied by 10 to 20% contrasting redox. Dominant vegetation was reed canary grass (FACW). No indicators of wetland hydrology were observed at upland data point (4). Soil displayed a light matrix chroma absent of redoximorphic features. The vegetation parameter was satisfied through a mix of FAC and FACW species. Wetlands were flagged in the field and surveyed. (Attachment C: Wetland Delineation Site Plan)
5.7 Wetland Rating and Functions - The isolated wetland and wetland mosaic were rated using the Washington State Wetland Rating System for Western Washington (Revised 2004/Updated October 2008). The rating system is designed to differentiate between wetlands based on their sensitivity to disturbance, rarity, the functions they provide and whether they can be replaced or not. The rating system divides wetlands into six different hydrogeomorphic (HGM) classes. These classes sort wetlands into groups that function in similar ways. The rating system then rates the wetlands based on specific functional attributes relating to water quality, hydrologic and habitat functions. The following table summarizes the assessment detailed in the rating attached to the report. (Attachment D: Wetland Rating Forms)

Table 2 – Wetland Rating Summary

<table>
<thead>
<tr>
<th>Wetland</th>
<th>HGM</th>
<th>Cowardin</th>
<th>Water Quality</th>
<th>Hydrologic</th>
<th>Habitat</th>
<th>Total</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Depressional</td>
<td>PEMC</td>
<td>10</td>
<td>7</td>
<td>9</td>
<td>26</td>
<td>IV</td>
</tr>
<tr>
<td>B</td>
<td>Depressional</td>
<td>PEMC, PFOC, PSSC</td>
<td>22</td>
<td>18</td>
<td>28</td>
<td>68</td>
<td>I</td>
</tr>
</tbody>
</table>

PEMC = Palustrine Emergent Seasonally Flooded
PFOC = Palustrine Forested Seasonally Flooded
PSSC = Palustrine Scrub Shrub Seasonally Flooded

The rating system defines Category I and IV wetlands as follows:

“Category I wetlands are those that 1) represent a unique or rare wetland type; or 2) are more sensitive to disturbance than most wetlands; or 3) are relatively undisturbed and contain ecological attributes that are impossible to replace within a human lifetime; or 4) provide a high level of functions. We cannot afford the risk of any degradation to these wetlands because their function and values are too difficult to replace. Generally these wetlands are not common and make up a small percentage of the wetlands in the region.”

“Category IV wetlands have the lowest levels of functions of functions (scores less than 30 points) and are often heavily disturbed. These are wetlands that we should be able to replace, and in some cases be able to improve. However, experience has shown that replacement cannot be guaranteed in any specific case. These wetlands may provide some important functions, and also need to be protected.”

Because Wetland A is relatively small, isolated in the landscape and disturbed its water quality, hydrologic and habitat functions received low scores. (Note: Use of term “isolated” throughout this report is not intended to suggest a jurisdictional determination)

Because of its large size diversity of vegetation classes and landscape position (adjacent to the Skagit River), Wetland B received high ratings for each function. Wetland B received a particularly high habitat function score because of its emergent, scrub shrub and forested vegetation classes, richness of particular plant species, interspersion of habitat types and special habitat features.

6. Regulatory Analysis
The following protection standards and/or buffer requirements relating to Gages Slough, Skagit River and Wetlands A and B are addressed below. Buffers are considered the primary tool for protecting critical area functions and values. Chapter 14.04 defines a critical area buffer as “The area that is contiguous to and protects a critical area which is required for the continued maintenance, functioning, and/or structural stability of a critical area.”
6.1 Riparian Protection Standards - Subsection 14.24.530 of the CAO establishes standards for the protection of riparian areas:

6.1.1 - The standard riparian buffer for the Skagit River (Type S Water) is 200 feet. The buffer is measured from the OHWM in a landward direction. On site, the buffer is be measured from the OHWM of the river including the side channel as identified and discussed under Existing Conditions.

6.1.2 - The standard riparian buffer for Gages Slough (Type F Water > 5 feet width) is 150 feet. Because Gages Slough is separated from the project site by Lafayette Road, Skagit County may modify the required buffer width to end at the western roadway edge pursuant to sec 14.24.230 provided that the following criteria are met. (criteria appear in italics):

(a) *The isolated part of the buffer does not provide additional protection of the wetland;*

Gages Slough is located contiguous to the western edge of Lafayette Road. The project site is functionally isolated from the slough (wetland)

(b) *The isolated part of the buffer provides insignificant biological, geological or hydrological buffer functions relating to the wetland;*

The isolated part of the buffer (east of Lafayette Road) is currently cleared farmland and does not provide significant functions relating to the slough (wetland)

(c) *If the resulting buffer distance is less than 50% of the standard or optional buffer for the applicable wetland category, no further reduction shall be allowed.*

The slough has not been provided with a qualitative rating or category, however, the wetland edge is located within the western right of way of Lafayette Road. Because the proposed project is located east of the road no future project related buffer reductions will be needed or requested.

6.2 Wetland Protection Standards - Subsection 14.24.230 of the CAO establishes standards for the protection of wetlands:

6.2.1 - Wetland A will be filled as a result of landward expansion of the levee. Subsection 14.24.230 (6) (b) provides for partial exemption of Category IV wetlands between 1000 and 4000 square feet in area. Such wetlands may be exempt from the mitigation sequencing requirement to avoid impacts based on the following conditions (criteria appear in italics):

The wetland is isolated – Wetland A is a 2,954 square foot depressional wetland isolated from other wetlands and aquatic features in the vicinity by the existing Skagit River levee.

The wetland is not associated with a riparian corridor - Wetland A is isolated from the Skagit River corridor by the existing levee and is approximately 300 linear feet from the OHWM of the River.

The Wetland is not part of a wetland mosaic – Wetland A is isolated from other wetlands in the vicinity including the Wetland mosaic identified as Wetland B. Wetland B is located on the waterward side of the levee approximately 900 linear feet south of Wetland A.
Such wetlands may be exempt from the mitigation sequencing requirement to first avoid impacts where the following criteria are met (criteria appear in italics):

The wetland meets the criteria listed above – The above criteria have been satisfied.

The project impacts are fully mitigated – Project impacts have been mitigated by avoiding waterward expansion of the levee and complying with requirements of the U.S. Army Corps of Engineers and WA State Department of Ecology.

The CAO provides for consideration of jurisdictional substitution under Subsection 14.24.040 (3) as follows:

“Jurisdictional Substitution. In cases where other agencies possess jurisdictional control over critical areas and it is determined by the administrative official that the permit conditions satisfy the requirements of this chapter, those requirements may substitute for the requirements of this Chapter. Such requirements shall be a condition of critical area approval and be enforceable by the County. Such agencies may include, but are not limited to, The United States Army Corps of Engineers, Environmental Protection Agency and Fish and Wildlife Services; local tribes and the Washington State Department of Ecology, Department of Natural Resources and Department of Fish and Wildlife. The County shall notify the applicant in writing when any such substitution is made.”

The applicant will obtain a Nationwide 18 permit (Minor Discharges) or other appropriate nationwide permit as required by the U.S. Army Corps of Engineers to fill Wetland A. In addition the Corps will provide opportunities for public, agency and tribal involvement in review of the project. GBA have concluded that the permit requirements and authorizations associated with the Corps permit, DOE water quality certification and Coastal Zone Certification requirements and other National and Regional General Conditions, and Notification Conditions will provide critical area protection sufficient to satisfy the requirements of the CAO. Threatened and endangered species, aquatic habitat, fisheries and water quality will be addressed and included as specific permit conditions by Federal and State agencies of jurisdiction.

6.2.2 – Wetland B Subsection 14.24.230 (1) (b) of the CAO establishes optional buffer requirements for wetlands based on habitat score and proposed land use intensity. The habitat score for Wetland B is 28. GBA have determined that the proposed land use intensity is moderate. The required optional buffer for Wetland B is 155 feet. Project activities are proposed to encroach into 0.58 acres of the buffer along the southern portion of the project area. Because of the linear nature of the project and appropriate candidate locations for increased buffer widths a buffer averaging approach to buffer impacts is being proposed.

6.3 Buffer Width Averaging

Subsection 14.24.240 (2) provides for Buffer Width Averaging which allows limited reductions of buffer width in specified locations, while requiring increases in others. Averaging of required buffer widths is allowed only if the applicant demonstrates that all of the following criteria are met: (criteria appear in italics)

(a) Averaging is necessary to accomplish the purpose of the proposal and no reasonable alternative is available.

The location of the northwestern boundary of Wetland B relative to the existing levee and proposed project activities requires that the buffer be reduced in two areas within the southern
portion of the project site. The areas are located adjacent to the northwest boundary of the wetland (0.40 acres) and at a point approximately equidistant between the northern wetland boundary and Gardner Road (0.18 acres). The total area proposed to be decreased is 0.58 acres. The purpose of the project is to protect lives and property from Skagit River Flooding.

(b) Averaging buffer width will not adversely impact the wetland functions and values.

Decreasing the buffer width in the identified areas is not anticipated to impact wetland functions and values because the existing levee is already in place and proposed improvements will occur landward of the existing footprint.

(c) The total area contained in the wetland buffer after averaging is no less than that contained within the standard buffer prior to averaging.

The total area contained in the buffer will be maintained consistent with the standard by increasing the buffer width along the northern wetland boundary. The area that will be decreased consists of cleared pasture landward of the existing levee while the area increased consists of a mixed forest canopy waterward of the levee.

(d) The buffer width shall not be reduced below 75% of the standard buffer width.

The buffer will be reduced by 25% (to 116 feet) of the standard at the closest point to project activities. The proposed buffer will not be reduced below 75% of the standard buffer.

(Attachment E: Buffer Averaging Plan)

7. Summary and Conclusion
Because all project activities will occur landward of the existing Skagit River levee, little impact was identified through our assessment. Standard riparian buffers will be maintained relative to the Skagit River and Side channel. Buffer averaging will decrease the standard buffer for Wetland B in areas of cleared pasture landward of the existing levee while increasing the buffer in a mixed forest canopy waterward of the levee. Wetland A which is partially exempt from regulation under the County CAO will be filled and addressed pursuant to jurisdictional substitution by the U.S. Army Corps of Engineers. Levee improvement will provide increased protection of lives and property from Skagit River flooding.

8. Closure
While GBA utilized currently accepted methods and protocols for the identification of habitat conservation areas, the findings and conclusions rendered in this report represent our professional opinion. Concurrence should be obtained from Skagit County Planning and Development Services and other agencies of jurisdiction prior to initiating remediation actions or mitigation planting. Thank you for contacting us with your project. Please call either Patricia Bunting or myself with any questions relating to this report.

Patricia Bunting, Wetland Ecologist/PWS
Oscar Graham, Shoreline Planner
9. References

Washington State Department of Fish and Wildlife, January 2012, Priority Habitats and Species List.

Washington State Department of Ecology, April 15-16, 2009. How to Determine the Ordinary High Water Mark; Coastal Training Program.

Personal Communications

Cooper, John. Senior Planner/Geologist - Skagit County Planning and Development Services; Telephone conversation regarding Skagit County Critical Area Ordinance requirements: October, 2012.

Semrau, John. Semrau Engineering and Surveying, PLLC; Telephone Consultation regarding information: August – November 2012.
Wetland Field Data Forms

Attachment B
WETLAND DETERMINATION DATA FORM – Western Mountains, Valleys, and Coast Region

Project/Site: Levee Modification
City/County: Skagit
Sampling Date: 10/11/2012

** Applicant/Owner**: Dike District
** State**: WA
** Sampling Point**: DP-1

Investigator(s): Pat/Oscar, Graham-Bunting Associates
** Local relief (concave, convex, none)**: concave
** Slope (%)**: 1

Landform (hillslope, terrace, etc.):

<table>
<thead>
<tr>
<th>Landform</th>
<th>Latitude</th>
<th>Longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>alluvial terrace</td>
<td>48°28'80"</td>
<td>N122.17'54.97"</td>
</tr>
</tbody>
</table>

Subregion (LRR):

<table>
<thead>
<tr>
<th>Subregion</th>
<th>Lat.</th>
<th>Long.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Soil Map Unit Name: Sedrowoolley silt loam
** NWI classification**: emergent

Remarks: end of long drought

VEGETATION – Use scientific names of plants.

Tree Stratum (Plot size: 25 ft)

<table>
<thead>
<tr>
<th>Species</th>
<th>% Cover</th>
<th>Indicator Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Populus balsamifera</td>
<td>7</td>
<td>Y</td>
</tr>
<tr>
<td>Juncus effusus</td>
<td>20</td>
<td>FAC</td>
</tr>
<tr>
<td>Scirpus acutus</td>
<td>10</td>
<td>OBL</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Total Cover</td>
</tr>
</tbody>
</table>

Sapling/Shrub Stratum (Plot size: 10 ft)

<table>
<thead>
<tr>
<th>Species</th>
<th>% Cover</th>
<th>Indicator Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alnus rubra</td>
<td>2%</td>
<td>N</td>
</tr>
<tr>
<td>Juncus effusus</td>
<td>20</td>
<td>FAC</td>
</tr>
<tr>
<td>Scirpus acutus</td>
<td>10</td>
<td>OBL</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Total Cover</td>
</tr>
</tbody>
</table>

Herb Stratum (Plot size: 5 ft)

<table>
<thead>
<tr>
<th>Species</th>
<th>% Cover</th>
<th>Indicator Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phalaris arundinacea</td>
<td>40</td>
<td>FAC</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Total Cover</td>
</tr>
</tbody>
</table>

Woody Vine Stratum (Plot size: ___)

<table>
<thead>
<tr>
<th>Species</th>
<th>% Cover</th>
<th>Indicator Status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40</td>
<td>Total Cover</td>
</tr>
</tbody>
</table>

Remarks: Hydrophytic vegetation indicator, > 50% FAC or greater, is met.

SUMMARY OF FINDINGS

- **Hydrophytic Vegetation Present?** Yes ☒ No ☐
- **Hydric Soil Present?** Yes ☒ No ☐
- **Wetland Hydrology Present?** Yes ☒ No ☐

Remarks: Hydrophytic vegetation indicator, > 50% FAC or greater, is met.

Dominance Test worksheet:

<table>
<thead>
<tr>
<th>Number of Dominant Species That Are OBL, FACW, or FAC:</th>
<th>4 (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Number of Dominant Species Across All Strata:</td>
<td>4 (B)</td>
</tr>
<tr>
<td>Percent of Dominant Species That Are OBL, FACW, or FAC:</td>
<td>100 (A/B)</td>
</tr>
</tbody>
</table>

Prevalence Index worksheet:

<table>
<thead>
<tr>
<th>Total % Cover of:</th>
<th>Multiply by:</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBL species</td>
<td>x 1 =</td>
</tr>
<tr>
<td>FACW species</td>
<td>x 2 =</td>
</tr>
<tr>
<td>FAC species</td>
<td>x 3 =</td>
</tr>
<tr>
<td>FACU species</td>
<td>x 4 =</td>
</tr>
<tr>
<td>UPL species</td>
<td>x 5 =</td>
</tr>
</tbody>
</table>

Prevalence Index = B/A =

Hydrophytic Vegetation indicators:

- Rapid Test for Hydrophytic Vegetation
- Dominance Test is >50%
- Prevalence Index is 3.0
- Morphological Adaptations (Provide supporting data in Remarks or on a separate sheet)
- Wetland Non-Vascular Plants
- Problematic Hydrophytic Vegetation (Explain)

Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.

Are Vegetation, Soil, or Hydrology significantly disturbed? Are Normal Circumstances present? Yes ☒ No ☐

Are Vegetation, Soil, or Hydrology naturally problematic? (If needed, explain any answers in Remarks.)

Attach site map showing sampling point locations, transects, important features, etc.
Profile Description:
(Describe to the depth needed to document the indicator or confirm the absence of indicators.)

<table>
<thead>
<tr>
<th>Depth (inches)</th>
<th>Color (moist)</th>
<th>%</th>
<th>Color (moist)</th>
<th>%</th>
<th>Type</th>
<th>Loc</th>
<th>Texture</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-20"</td>
<td>2.5Y 5/2</td>
<td>95</td>
<td>10YR 5/8</td>
<td>S</td>
<td>D</td>
<td>M</td>
<td>SiltClayLm</td>
<td></td>
</tr>
</tbody>
</table>

Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains.

Hydric Soil Indicators:
(Applicable to all LRRs, unless otherwise noted.)

- Histosol (A1)
- Black Histosol (A3)
- Hydrogen Sulphate (A4)
- Depleted Below Dark Surface (A11)
- Thick Dark Surface (A12)
- Sandy Mucky Mineral (S1)
- Sandy Gleyed Matrix (S4)

Hydric Soil Indicators (Problematic Hydric Soils):

- 2 cm Muck (A10)
- Red Parent Material (TF2)
- Very Shallow Dark Surface (TF12)
- Other (Explain in Remarks)

Restrictive Layer (if present):

- Type:
- Depth (inches):

Hydric Soil Present?: Yes ☐ No ☐

Remarks: Hydric soil indicator, low chroma matrix with redox concentrations

HYDROLOGY

Wetland Hydrology Indicators:

Primary Indicators (minimum of one required; check all that apply)

- Surface Water (A1)
- High Water Table (A2)
- Saturation (A3)
- Water Marks (B1)
- Sediment Deposits (B2)
- Drift Deposits (B3)
- Algal Mat or Crust (B4)
- Iron Deposits (B5)
- Surface Soil Cracks (B6)
- Inundation Visible on Aerial Imagery (B7)
- Sparsely Vegetated Concave Surface (B8)

Secondary Indicators (2 or more required)

- Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B)
- Drainage Patterns (B10)
- Aquatic Invertebrates (B13)
- Saturation Visible on Aerial Imagery (C9)
- Shallow Aquafard (D3)
- Oxidized Rhizospheres along Living Roots (C3)
- Geomorphic Position (D2)
- Recent Iron Reduction in Tilled Soils (C6)
- Shallow Aquafard (D3)
- Stunted or Stressed Plants (D1) (LRR A)
- Frost-Heave Hummocks (D7)
- Other (Explain in Remarks)

Field Observations:

- Surface Water Present? Yes ☐ No ☒ Depth (inches):
- Water Table Present? Yes ☐ No ☒ Depth (inches): >20"
- Saturation Present? Yes ☒ No ☐ Depth (inches):

Wetland Hydrology Present?: Yes ☒ No ☐

Remarks: Wetland hydrology indicators, saturation, water marks and sediment deposits are met. This area is a very small depression at toe of levee.
WETLAND DETERMINATION DATA FORM – Western Mountains, Valleys, and Coast Region

Project/Site: Levee Modification
City/County: Skagit
State: WA
Sampling Date: 10/1/2012

Applicant/Owner: Dike District 12

Investigator(s): Pat/Oscar Graham-Bunting Associates

Landform (hillside, terrace, etc.): alluvial terrace
Local relief (concave, convex, none): concave
Slope (%): 1

Subregion (LRR): A
Lat: 48°28'80"
Long: N122°17'54.97"
Datum:

Soil Map Unit Name: Sedro Woolley silt loam
NWI classification:

Are climatic / hydrologic conditions on the site typical for this time of year? Yes ☐ No ☑ (If no, explain in Remarks.)

Are Vegetation, Soil, or Hydrology significantly disturbed? Are “Normal Circumstances” present? Yes ☑ No ☐

Are Vegetation, Soil, or Hydrology naturally problematic? (If needed, explain any answers in Remarks.)

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Yes ☑ No ☐
Hydric Soil Present? Yes ☐ No ☐
Wetland Hydrology Present? Yes ☐ No ☐

Remarks: end of long drought

VEGETATION – Use scientific names of plants.

<table>
<thead>
<tr>
<th>Stratum</th>
<th>Species</th>
<th>% Cover</th>
<th>Dominant Indicator</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tree Stratum (Plot size: 25 ft)</td>
<td>1. Populus balsamifera</td>
<td>50</td>
<td>Y</td>
<td>FAC</td>
</tr>
<tr>
<td></td>
<td>2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.</td>
<td>50</td>
<td>= Total Cover</td>
<td></td>
</tr>
<tr>
<td>Sapling/Shrub Stratum (Plot size: 10 ft)</td>
<td>1. Rubus discolor</td>
<td>10</td>
<td>Y</td>
<td>FACU</td>
</tr>
<tr>
<td></td>
<td>2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.</td>
<td>50</td>
<td>= Total Cover</td>
<td></td>
</tr>
<tr>
<td>Herb Stratum (Plot size: 5 ft)</td>
<td>1. Phalaris arundinacea</td>
<td>100</td>
<td>Y</td>
<td>FACW</td>
</tr>
<tr>
<td></td>
<td>2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Woody Vine Stratum (Plot size: _____)</td>
<td>1.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 % Cover</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

% Bare Ground in Herb Stratum _____

Remarks: Hydrophytic vegetation indicator, > 50% FAC or greater, is met.

Hydrophytic Vegetation Indicators:

- Rapid Test for Hydrophytic Vegetation ☑
- Dominance Test is >50% ☑
- Prevalence index is ≥3.0 ☑
- Morphological Adaptations (Provide supporting data in Remarks or on a separate sheet)
- Wetland Non-Vascular Plants ☐
- Problematic Hydrophytic Vegetation (Explain) ☐

Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.

US Army Corps of Engineers Western Mountains, Valleys, and Coast – Version 2.0
Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

<table>
<thead>
<tr>
<th>Depth (inches)</th>
<th>Color (moist)</th>
<th>Redox Features</th>
<th>Texture</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-5</td>
<td>10YR 4/4</td>
<td></td>
<td>s</td>
</tr>
<tr>
<td>5-9</td>
<td>2.5Y 4/3</td>
<td></td>
<td>s</td>
</tr>
<tr>
<td>9+</td>
<td>2.5Y 4/2</td>
<td></td>
<td>s</td>
</tr>
</tbody>
</table>

Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.)

- Histosol (A1)
- Black Histosol (A3)
- Depleted Below Dark Surface (A11)
- Thick Dark Surface (A12)
- Sandy Mucky Mineral (S1)
- Sandy Gleyed Matrix (S4)

Restrictive Layer (if present):

| Depth (inches): | Remarks: Hydric soil indicators are not met, chroma matrix is not dark and there are no redox concentrations |

HYDROLOGY

Wetland Hydrology Indicators:

- Surface Water (A1)
- High Water Table (A2)
- Saturation (A3)
- Water Marks (B1)
- Sediment Deposits (B2)
- Drift Deposits (B3)
- Algal Mat or Crust (B4)
- Iron Deposits (B5)
- Surface Soil Cracks (B6)
- Indication Visible on Aerial Imagery (B7)
- Sparsely Vegetated Concave Surface (B8)

Secondary indicators (2 or more required):

- Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B)
- Oxidized Rhizospheres along Living Roots (C3)
- Recent Iron Reduction in Tilled Soils (C5)
- Stunted or Stressed Plants (D1) (LRR A)
- Recent Iron Reduction in Tilled Soils (C5)
- Recent Iron Reduction in Tilled Soils (C5)
- Other (Explain in Remarks)

Field Observations:

- Surface Water Present? Yes ☐ No ☐ Depth (inches): __________
- Water Table Present? Yes ☐ No ☐ Depth (inches): >20”
- Saturation Present? Yes ☐ No ☐ Depth (inches): __________

Wetland Hydrology Present? Yes ☐ No ☐

Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available. Long drought season

Remarks: Wetland hydrology indicators are not met. Soil saturation was not present, root zones were not oxidized.
WETLAND DETERMINATION DATA FORM - Western Mountains, Valleys, and Coast Region

Project/Site: Levee Modification
City/County: Skagit
State: WA
Sampling Date: 10/1/2012
Applicant/Owner: Dike District 12
Investigator(s): Pat/Oscar Graham-Bunting Associates
Sampling Point: DP-3
Landform (hillslope, terrace, etc.): alluvial terrace
Local relief (concave, convex, none): concave
Slope (%): 1
Subregion (LRR): A
Landform (hillslope, terrace, etc.): alluvial terrace
Landform (LRR): A

Soil Map Unit Name: Sedro Woolley silt loam
NWI classification: emergent

Are climatic/hydrologic conditions on the site typical for this time of year? Yes ☐ No ☒ (If no, explain in Remarks.)
Are Vegetation, Soil, or Hydrology significantly disturbed? Are "Normal Circumstances" present? Yes ☒ No ☐
Are Vegetation, Soil, or Hydrology naturally problematic? (If needed, explain any answers in Remarks.)

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Yes ☐ No ☒
Hydric Soil Present? Yes ☐ No ☒

Are Vegetation, Soil, or Hydrology significantly disturbed? Are "Normal Circumstances" present? Yes ☒ No ☐
Are Vegetation, Soil, or Hydrology naturally problematic? (If needed, explain any answers in Remarks.)

Hydrophytic Vegetation Present? Yes ☒ No ☐
Hydric Soil Present? Yes ☒ No ☐
Wetland Hydrology Present? Yes ☒ No ☐

Remarks: end of long drought

VEGETATION - Use scientific names of plants.

Tree Stratum (Plot size: 25 ft)
1. ____________________________ % Cover ____________________________ Species? ____________________________ Status ____________________________
2. ____________________________ % Cover ____________________________ Species? ____________________________ Status ____________________________
3. ____________________________ % Cover ____________________________ Species? ____________________________ Status ____________________________
4. ____________________________ % Cover ____________________________ Species? ____________________________ Status ____________________________

Total Cover: ____________________________

Sapling/Shrub Stratum (Plot size: 10 ft)
1. ____________________________ % Cover ____________________________ Species? ____________________________ Status ____________________________
2. ____________________________ % Cover ____________________________ Species? ____________________________ Status ____________________________
3. ____________________________ % Cover ____________________________ Species? ____________________________ Status ____________________________
4. ____________________________ % Cover ____________________________ Species? ____________________________ Status ____________________________
5. ____________________________ % Cover ____________________________ Species? ____________________________ Status ____________________________

Total Cover: ____________________________

Herb Stratum (Plot size: 4 ft)
1. Phalaris arundinacea 100 ☑ FACW
2. ____________________________ % Cover ____________________________ Species? ____________________________ Status ____________________________
3. ____________________________ % Cover ____________________________ Species? ____________________________ Status ____________________________
4. ____________________________ % Cover ____________________________ Species? ____________________________ Status ____________________________
5. ____________________________ % Cover ____________________________ Species? ____________________________ Status ____________________________
6. ____________________________ % Cover ____________________________ Species? ____________________________ Status ____________________________
7. ____________________________ % Cover ____________________________ Species? ____________________________ Status ____________________________
8. ____________________________ % Cover ____________________________ Species? ____________________________ Status ____________________________
9. ____________________________ % Cover ____________________________ Species? ____________________________ Status ____________________________
10. ____________________________ % Cover ____________________________ Species? ____________________________ Status ____________________________
11. ____________________________ % Cover ____________________________ Species? ____________________________ Status ____________________________

Total Cover: ____________________________

Woody Vine Stratum (Plot size: ______)
1. ____________________________ % Cover ____________________________ Species? ____________________________ Status ____________________________
2. ____________________________ % Cover ____________________________ Species? ____________________________ Status ____________________________

Total Cover: ____________________________

% Bare Ground in Herb Stratum ____________________________

Remarks: Hydrophytic vegetation indicator, > 50% FAC or greater, is met.

Dominance Test worksheet:
Number of Dominant Species That Are OBL, FACW, or FAC: 1 (A)
Total Number of Dominant Species Across All Strata: 1 (B)
Percent of Dominant Species That Are OBL, FACW, or FAC: 100 (A/B)

Prevalence Index worksheet:
Total % Cover of: Multiply by:
OBL species x 1 =
FACW species x 2 =
FAC species x 3 =
FACU species x 4 =
UPL species x 5 =
Column Totals: (A) (B)

Prevalence index = (A) / (B)

Hydrophytic Vegetation indicators:
☐ Rapid Test for Hydrophytic Vegetation
☐ Dominance Test is >50%
☐ Prevalence index is ≤ 3.0
☐ Morphological Adaptations? (Provide supporting data in Remarks or on a separate sheet)
☐ Wetland Non-Vascular Plants
☐ Problematic Hydrophytic Vegetation? (Explain)

Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.

Hydrophytic Vegetation Present? Yes ☐ No ☒
SOIL

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

<table>
<thead>
<tr>
<th>Depth (inches)</th>
<th>Matrix Color (moist)</th>
<th>%</th>
<th>Redox Features Color (moist)</th>
<th>%</th>
<th>Type</th>
<th>Location</th>
<th>Texture</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-5</td>
<td>10 YR 4/4</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>sl</td>
<td></td>
</tr>
<tr>
<td>5-9</td>
<td>2.5Y 5/3</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>sl</td>
<td></td>
</tr>
<tr>
<td>9+</td>
<td>2.5Y 5/2</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>sl</td>
<td></td>
</tr>
</tbody>
</table>

Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains

Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.)

- Histosol (A1)
- Black Histic (A3)
- Hydrogen Sulphate (A4)
- Depleted Below Dark Surface (A11)
- Thick Dark Surface (A12)
- Sandy Mucky Material (S1)
- Sandy Gleyed Matrix (S4)

Indicators for Problematic Hydric Soils:

- 2 cm Muck (A10)
- Red Parent Material (TF2)
- Very Shallow Dark Surface (TF12)
- Other (Explain in Remarks)

Restrictive Layer (if present):

<table>
<thead>
<tr>
<th>Type</th>
<th>Depth (inches)</th>
<th>Hydric Soil Present?</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>

Remarks: Hydric soil indicators are not met, chroma matrix 3 is not dark and there are no redox concentrations.

HYDROLOGY

Wetland Hydrology Indicators:

- Surface Water (A1)
- High Water Table (A2)
- Saturation (A3)
- Water Marks (B1)
- Sediment Deposits (B2)
- Drift Deposits (B3)
- Algal Mat or Crust (B4)
- Iron Deposits (B5)
- Surface Soil Cracks (B6)
- Inundation Visible on Aerial Imagery (B7)
- Sparsely Vegetated Concave Surface (B8)

Secondary Indicators (more required):

- Water-Stained Leaves (B9)
- Salt Crust (B11)
- Aquatic Invertebrates (B13)
- Hydrogen Sulphide Odor (C1)
- Oxidized Rhizospheres along Living Roots (C3)
- Presence of Reduced Iron (C4)
- Recent Iron Reduction in Tilled Soils (C6)
- Stunted or Stressed Plants (D1 (LRR A))

Field Observations:

- Surface Water Present? Yes | No Depth (inches): ___________
- Water Table Present? Yes | No Depth (inches): >20"
- Saturation Present? Yes | No Depth (inches): ___________

Wetland Hydrology Present? Yes | No

Remarks: Wetland hydrology indicators are not met. Soil saturation was not present, root zones were not oxidized.

US Army Corps of Engineers
Western Mountains, Valleys, and Coast – Version 2.0
WETLAND DETERMINATION DATA FORM – Western Mountains, Valleys, and Coast Region

Project/Site: Levee Modification
Applicant/Owner: Dike District 12
Investigator(s): Pat/Oscar Graham-Bunting Associates
Landform (hillslope, terrace, etc.): alluvial terrace
Landform (hillslope, terrace, etc.): concave
Subregion (LRR): A
Sampling Date: 10/3/2012
State: WA
Section, Township, Range: S33 T35N, R4E
Local relief (concave, convex, none): concave
Slope (%): 1
Investigator(s): Pat/Oscar Graham-Bunting Associates
Investigator(s): Pat/Oscar Graham-Bunting Associates
Investigator(s): Pat/Oscar Graham-Bunting Associates

Are climatic/hydrologic conditions on the site typical for this time of year? Yes ☐ No ☐ (If no, explain in Remarks.)
Are Vegetation, Soil, or Hydrology significantly disturbed? Yes ☐ No ☐
Are Vegetation, Soil, or Hydrology naturally problematic? Yes ☐ No ☐
Are "Normal Circumstances" present? Yes ☐ No ☐

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Yes ☐ No ☐
Hydric Soil Present? Yes ☐ No ☐
Wetland Hydrology Present? Yes ☐ No ☐
Is the Sampled Area within a Wetland? Yes ☐ No ☐

Remarks: end of long drought

VEGETATION – Use scientific names of plants.

<table>
<thead>
<tr>
<th>Tree Stratum (Plot size: 25 ft)</th>
<th>% Cover</th>
<th>Species?</th>
<th>Indicator</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

= Total Cover

<table>
<thead>
<tr>
<th>Sapling/Shrub Stratum (Plot size: 10 ft)</th>
<th>% Cover</th>
<th>Species?</th>
<th>Indicator</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

= Total Cover

<table>
<thead>
<tr>
<th>Herb Stratum (Plot size: 5 ft)</th>
<th>% Cover</th>
<th>Species?</th>
<th>Indicator</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Agrostis tenuis</td>
<td>60</td>
<td>Y</td>
<td>FAC</td>
<td></td>
</tr>
<tr>
<td>2. Phalaris arundinacea</td>
<td>30</td>
<td>Y</td>
<td>FACW</td>
<td></td>
</tr>
<tr>
<td>3. Cirsium arvense</td>
<td>10</td>
<td>N</td>
<td>FACU</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

= Total Cover

<table>
<thead>
<tr>
<th>Woody Vine Stratum (Plot size:)</th>
<th>% Cover</th>
<th>Species?</th>
<th>Indicator</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

= Total Cover

<table>
<thead>
<tr>
<th>% Bare Ground in Herb Stratum</th>
<th></th>
</tr>
</thead>
</table>

Remarks: Hydrophytic vegetation indicator, > 50% FAC or greater, is met.

Hydrophytic Vegetation Present? Yes ☐ No ☐

Hydrophytic Vegetation Indicators:
☐ Rapid Test for Hydrophytic Vegetation
☐ Dominance Test is >50%
☐ Prevalence Index is ≤3.0
☐ Morphological Adaptations (Provide supporting data in Remarks or on a separate sheet)
☐ Wetland Non-Vascular Plants
☐ Problematic Hydrophytic Vegetation (Explain)
Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.

Hydrophytic Vegetation Present? Yes ☐ No ☐
Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

<table>
<thead>
<tr>
<th>Depth (inches)</th>
<th>Color (moist)</th>
<th>%</th>
<th>Color (moist)</th>
<th>%</th>
<th>Type</th>
<th>Loc</th>
<th>Texture</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-6</td>
<td>2.Y 3/3</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8+</td>
<td>2.Y 4/3</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains. Location: PL=Pore Lining, M=Matrix.

Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.)

- Histosol (A1)
- Histic Epipedon (A2)
- Black Histic (A3)
- Hydrogen Sulfdide (A4)
- Depleted Below Dark Surface (A11)
- Thick Dark Surface (A12)
- Sandy Mucky Mineral (S1)
- Sandy Gleyed Matrix (S4)

Indicators for Problematic Hydric Soils:

- 2 cm Muck (A10)
- Red Parent Material (TF2)
- Very Shallow Dark Surface (TF12)

Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic.

Restrictive Layer (if present):

- Type:
- Depth (inches):

Remarks: Hydric soil indicators are not met, chroma matrix 3 is not dark and there are no redox concentrations.

Hydric Soil Present? Yes ☐ No ☒

Hydrology

Primary Indicators (minimum of one required; check all that apply)

- Surface Water (A1)
- High Water Table (A2)
- Saturation (A3)
- Water Marks (B1)
- Sediment Deposits (B2)
- Drit Deposits (B3)
- Algal Mat or Crust (B4)
- Iron Deposits (B5)
- Surface Soil Cracks (B6)
- Inundation Visible on Aerial Imagery (B7)
- Sparsely Vegetated Concave Surface (B8)

Secondary Indicators (2 or more required)

- Water-Stained Leaves (B6) (except MLRA 1, 2, 4A, and 4B)
- Salt Crust (B11)
- Aquatic Invertebrates (B13)
- Hydrogen Sulfide Odor (C1)
- Oxidized Rhizospheres along Living Roots (C3)
- Presence of Reduced Iron (C4)
- Recent Iron Reduction in Tilled Soils (C6)
- Stunted or Stressed Plants (D1) (LRR A)
- Other (Explain in Remarks)

Field Observations:

- Surface Water Present? Yes ☐ No ☒ Depth (inches): ________
- Water Table Present? Yes ☐ No ☒ Depth (inches): 20” ________
- Saturation Present? Yes ☐ No ☒ Depth (inches): ________

Wetland Hydrology Present? Yes ☐ No ☒

Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available: long drought season

Remarks: Wetland hydrology indicators are not met. Soil saturation was not present, root zones were not oxidized.

US Army Corps of Engineers
WETLAND DETERMINATION DATA FORM – Western Mountains, Valleys, and Coast Region

Project/Site: Levee Modification
City/County: Skagit
State: WA
Sampling Date: 10/3/2012
Applicant/Owner: Dike District 12
Section, Township, Range: S33, T34N, R4E
Investigator(s): Pat/Oscar Graham-Bunting Associates
Landform (hillslope, terrace, etc.): alluvial terrace
Local relief (concave, convex, none): concave
Slope (%): 1
Subregion (LRR): A
Lat: 48° 28’ 80”
Long: N122° 17’ 54.97”
Datum: __________
Soil Map Unit Name: Sedro Woolley silt loam
NWI classification: emergent

Are climatic / hydrologic conditions on the site typical for the time of year? Yes □ No □ (If no, explain in Remarks.)
Are Vegetation, Soil, or Hydrology significantly disturbed? □ Are “Normal Circumstances” present? Yes □ No □
Are Vegetation, Soil, or Hydrology naturally problematic? □ (If needed, explain any answers in Remarks.)

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Yes □ No □
Are the Sampled Area within a Wetland? Yes □ No □
Remarks: end of long drought

VEGETATION – Use scientific names of plants.

Tree Stratum (Plot size: 25 ft)

1. Absolute % Cover Cominant Indicator Species? Status
 2. □
 3. □
 4. □

Sapling/Shrub Stratum (Plot size: 10 ft)

1. □
2. □
3. □
4. □

Herb Stratum (Plot size: 5 ft)

1. Phalaris arundinacea 100 □ Y FACW
2. □
3. □
4. □

Dominance Test worksheet:

Number of Dominant Species That Are OBL, FACW, or FAC:	1 (A)
Total Number of Dominant Species Across All Strata:	1 (B)
Percent of Dominant Species That Are OBL, FACW, or FAC:	100 (A/B)

Prevalence Index worksheet:

Total % Cover of:	Multiply by:
OBL species	x 1 =
FACW species	x 2 =
FAC species	x 3 =
FACU species	x 4 =
UPL species	x 5 =
Column Totals:	\(A \)

Prevalence Index = \(\frac{B}{A} \) |

Hydrophytic Vegetation Indicators:

□ Rapid Test for Hydrophytic Vegetation
\(\times \) Dominance Test is >50%
\(\times \) Prevalence Index is >3.0
□ Morphological Adaptations\(^1\) (Provide supporting data in Remarks or on a separate sheet)
□ Wetland Non-Vascular Plants\(^1\)
□ Problematic Hydrophytic Vegetation\(^1\) (Explain)
Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.

Hydrophytic Vegetation Present? Yes □ No □

% Bare Ground in Herb Stratum

Remarks: Hydrophytic vegetation indicator, > 50% FAC or greater, is met.
SOIL

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

<table>
<thead>
<tr>
<th>Depth (inches)</th>
<th>Color (moist)</th>
<th>%</th>
<th>Color (moist)</th>
<th>%</th>
<th>Type</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4</td>
<td>10 YR 4/3</td>
<td>95</td>
<td>10YR 5/8</td>
<td>5</td>
<td>C</td>
<td>M</td>
</tr>
<tr>
<td>3</td>
<td>2.5Y 4/1</td>
<td>100</td>
<td>10YR 5/8</td>
<td>10</td>
<td>C</td>
<td>M</td>
</tr>
</tbody>
</table>

Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains.

Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.)

- Histosol (A1)
- Histic Epipedon (A2)
- Black Histic (A3)
- Hydrogen Sulfide (A4)
- Depleted Below Dark Surface (A11)
- Sandy Mucky Mineral (S1)
- Sandy Gleyed Matrix (S4)

Secondary Indicators for Problematic Hydric Soils:

- 2 cm Muck (A10)
- Red Parent Material (TF2)
- Very Shallow Dark Surface (TF12)
- Other (Explain in Remarks)

Restrictive Layer (if present):

<table>
<thead>
<tr>
<th>Type:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth (inches):</td>
</tr>
</tbody>
</table>

Hydric Soil Present? Yes ☑ No ☐

Remarks: Hydric soil indicators chroma matrix is dark and there are redox concentrations.

HYDROLOGY

Wetland Hydrology Indicators:

Primary Indicators (minimum of one required; check all that apply):

- Surface Water (A1)
- High Water Table (A2)
- Saturation (A3)
- Water Marks (B1)
- Sediment Deposits (B2)
- Drift Deposits (B3)
- Algal Mat or Crust (B4)
- Iron Deposits (B5)
- Surface Soil Cracks (B6)
- Inundation Visible on Aerial Imagery (B7)
- Sparingly Vegetated Concave Surface (B8)

Secondary Indicators (2 or more required):

- Water-Stained Leaves (B9) (except MLRA 1, 2, 4A, and 4B)
- Salt Crust (B11)
- Aquatic Invertebrates (B13)
- Hydrogen Sulfide Odor (C1)
- Oxidized Rhizospheres along Living Roots (C3)
- Presence of Reduced Iron (C4)
- Recent Iron Reduction in Tilled Soils (C6)
- Stunted or Stressed Plants (D1) (LRR A)
- Other (Explain in Remarks)

Field Observations:

<table>
<thead>
<tr>
<th>Surface Water Present?</th>
<th>Yes ☑ No ☐</th>
<th>Depth (inches):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Table Present?</td>
<td>Yes ☑ No ☐</td>
<td>Depth (inches):</td>
</tr>
<tr>
<td>(includes capillary fringe)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Wetland Hydrology Present? Yes ☑ No ☐

Remarks: Wetland hydrology indicators are met. Soil saturation was present, root zones were oxidized.

US Army Corps of Engineers

Western Mountains, Valleys, and Coast – Version 2.0
WETLAND DETERMINATION DATA FORM – Western Mountains, Valleys, and Coast Region

Project/Site: Levee Modification
City/County: Skagit
State: WA
Sampling Date: 10/3/2012
Applicant/Owner:
State: WA
Sampling Point: DP-S
Investigator(s): Pat/Oscar Graham-Bunting Associates
Section, Township, Range:
Landform: Alluvial terrace
Local relief: Concave
Slope (%):
Subregion (LRR):
Lat: 49° 28' 32"
Long: N122° 17' 54.97"
Datum:
Soil Map Unit Name: Sedro Woolley silt loam
Soil Map Unit Name:

Are climatic/hydrologic conditions on the site typical for this time of year?
Yes
No []
(If no, explain in Remarks.)

Are Vegetation, Soil, or Hydrology significantly disturbed?
Yes
No []

Are Vegetation, Soil, or Hydrology naturally problematic?
Yes
No []

(If needed, explain any answers in Remarks.)

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

<table>
<thead>
<tr>
<th>Hydrophytic Vegetation Present?</th>
<th>Yes [] No []</th>
<th>Is the Sampled Area within a Wetland?</th>
<th>Yes [] No []</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydric Soil Present?</td>
<td>Yes [] No []</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetland Hydrology Present?</td>
<td>Yes [] No []</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks: end of long drought

VEGETATION – Use scientific names of plants.

<table>
<thead>
<tr>
<th>Tree Stratum (Plot size: 25 ft)</th>
<th>Absolute % Cover</th>
<th>Dominant Indicator Species? Status</th>
<th>Dominance Test worksheet:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Number of Dominant Species That Are OBL, FACW, or FAC: 1 (A)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total Number of Dominant Species Across All Strata: 1 (B)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Percent of Dominant Species That Are OBL, FACW, or FAC: 100 (A/B)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sapling/Shrub Stratum (Plot size: 10 ft)</th>
<th>Total Cover</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Herb Stratum (Plot size: 5 ft)</th>
<th>% Cover</th>
<th>Indicator Species</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Phalaris arundinacea</td>
<td>100</td>
<td>Y</td>
<td>FACW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Woody Vine Stratum (Plot size:)</th>
<th>% Cover</th>
<th>Indicator Species</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100</td>
<td>Y</td>
<td></td>
</tr>
</tbody>
</table>

| % Bare Ground in Herb Stratum | |

Remarks: Hydrophytic vegetation indicator, > 50% FAC or greater, is met.
Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

<table>
<thead>
<tr>
<th>Depth (inches)</th>
<th>Matrix</th>
<th>Redox Features</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Color (moist)</td>
<td>%</td>
</tr>
<tr>
<td>0</td>
<td>10 YR 4/3</td>
<td>95</td>
</tr>
<tr>
<td>4</td>
<td>10 YR 4/1</td>
<td>80</td>
</tr>
</tbody>
</table>

Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains. Location: PL=Pore Lining, M=Matrix.

Hydric Soil indicators: (Applicable to all LRRs, unless otherwise noted.)

- Histosol (A1)
- Histic Epepidon (A2)
- Black Histic (A3)
- Hydrogen Sulfide (A4)
- Depleted Below Dark Surface (A11)
- Sandy Mucky Mineral (S1)
- Sandy Glyced Matrix (S4)

Indicators for Problematic Hydric Soils:

- 2 cm Muck (A10)
- Red Parent Material (TF2)
- Very Shallow Dark Surface (TF12)
- Other (Explain in Remarks)

Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic.

Restrictive Layer (if present):

<table>
<thead>
<tr>
<th>Type</th>
<th>Depth (inches)</th>
<th>Hydric Soil Present?</th>
</tr>
</thead>
</table>

Remarks: Hydric soil indicators chroma matrix 1 is dark and there are redox concentrations.

HYDROLOGY

Wetland Hydrology Indicators:

- Surface Water (A1)
- High Water Table (A2)
- Saturation (A3)
- Water Marks (B1)
- Sediment Deposits (B2)
- Drift Deposits (B3)
- Algal Mat or Crust (B4)
- Iron Deposits (B5)
- Surface Soil Cracks (B6)
- Inundation Visible on Aerial Imagery (B7)
- Sparsely Vegetated Concave Surface (B8)

Field Observations:

- Surface Water Present? Yes □ No ☑
- Water Table Present? Yes □ No ☑
- Saturation Present? Yes ☑ No □

Wetland Hydrology Present? Yes ☑ No □

Remarks: Wetland hydrology indicators are met. Soil saturation was present, root zones were oxidized.

US Army Corps of Engineers Western Mountains, Valleys, and Coast – Version 2.0
WETLAND DETERMINATION DATA FORM – Western Mountains, Valleys, and Coast Region

Project/Site: Levee Modification

Applicant/Owner: Pat/Oscar, Graham-Bunting Associates

Landform (hillslope, terrace, etc.): alluvial terrace

Sampling Point: DP-7

Investigator(s): Pat/Oscar, Graham-Bunting Associates

Soil Map Unit Name: Sedrowoolley silt loam

Vegetation: Use scientific names of plants.

<table>
<thead>
<tr>
<th>Tree Stratum (Plot size: 25 ft)</th>
<th>Absolute % Cover</th>
<th>Dominant Indicator Species? Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Thuja plicata</td>
<td>20 Y FAC</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sapling/Shrub Stratum (Plot size: 10 ft)</th>
<th>Total Cover</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>20</td>
</tr>
<tr>
<td>2.</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Herb Stratum (Plot size: 5 ft)</th>
<th>Total Cover</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Phalaris arundinacea</td>
<td>100 FACW</td>
</tr>
<tr>
<td>2.</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
</tr>
</tbody>
</table>

Hydrophytic Vegetation Present? Yes ☑ No ☐

Hydrad Soil Present? Yes ☑ No ☐

Wetland Hydrology Present? Yes ☑ No ☐

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Remarks: End of long drought

Hydrophytic Vegetation Indicators:

- Rapid Test for Hydrophytic Vegetation
- Dominance Test is >50%
- Prevalence index is ≤3.0
- Morphological Adaptations
- Wetland Non-Vascular Plants
- Problematic Hydrophytic Vegetation

Hydrophytic Vegetation Present? Yes ☑ No ☐

% Bare Ground in Herb Stratum

Remarks: Hydrophytic vegetation indicator, > 50% FAC or greater, is met.
Profile Description:
(Describe the depth needed to document the indicator or confirm the absence of indicators.)

<table>
<thead>
<tr>
<th>Depth (inches)</th>
<th>Matrix</th>
<th>Redox Features</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Color (moist)</td>
<td>%</td>
</tr>
<tr>
<td>0-15</td>
<td>2.5Y 3/1</td>
<td>85</td>
</tr>
</tbody>
</table>

Depth Matrix Redox Features (inches)

<table>
<thead>
<tr>
<th>Depth (inches)</th>
<th>Color (moist)</th>
<th>%</th>
<th>Color (moist)</th>
<th>%</th>
<th>Type</th>
<th>Location</th>
<th>Texture</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-15</td>
<td>2.5Y 3/1</td>
<td>85</td>
<td>5YR 4/8</td>
<td>15</td>
<td>C</td>
<td>M</td>
<td>st. clay loam</td>
<td></td>
</tr>
</tbody>
</table>

Type:
- C = Concentration
- D = Depletion
- RM = Reduced Matrix
- CS = Covered or Coated Sand Grains

Location:
- PL = Pore Lining
- M = Matrix

Hydric Soil Indicators:
(Applicable to all LRRs, unless otherwise noted.)

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Location</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Histosol (A1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black Histic (A3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrogen Sulfide (A4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depleted Below Dark Surface (A11)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sandy Mucky Mineral (S1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sandy Gleyed Matrix (S4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Histosol Epipedon (A2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stripped Matrix (S6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loamy Mucky Mineral (F1) except MLRA 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loamy Gleyed Matrix (F2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depleted Matrix (F3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Redox Dark Surface (F6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Redox Depressions (F9)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Restrictive Layer (if present):

<table>
<thead>
<tr>
<th>Type</th>
<th>Depth (inches):</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hydric Soil Present? Yes ☑ No ☐

Remarks:
Hydric soil indicators chroma matrix 1 is dark and there are redox concentrations

HYDROLOGY

Wetland Hydrology Indicators:

Primary Indicators (minimum of one required; check all that apply):

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Location</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Water (A1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Water Table (A2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saturation (A3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water Marks (B1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sediment Deposits (B2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drift Deposits (B3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Algal Mat or Crust (B4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron Deposits (B5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface Soil Cracks (B6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imundation Visible on Aerial Imagery (B7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sparsely Vegetated Concave Surface (B8)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Secondary Indicators (2 or more required):

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Location</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water-Stained Leaves (B9) except MLRA 1, 2, 4A, and 4B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salt Crust (B11)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aquatic Invertebrates (B13)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrogen Sulfide Odor (C1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxidized Rhizospheres along Living Roots (C3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Presence of Reduced Iron (C4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recent Iron Reduction in Tilled Soils (C6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stunted or Stressed Plants (O1) (LRR A)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other (Explain in Remarks)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Field Observations:

<table>
<thead>
<tr>
<th>Surface Water Present?</th>
<th>Yes ☑ No ☐</th>
<th>Depth (inches):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Table Present?</td>
<td>Yes ☑ No ☐</td>
<td>Depth (inches):</td>
</tr>
<tr>
<td>Saturation Present?</td>
<td>Yes ☑ No ☐</td>
<td>Depth (inches):</td>
</tr>
</tbody>
</table>

Wetland Hydrology Present? Yes ☑ No ☐

Remarks: Wetland hydrology indicators are met. Soil saturation was present, root zones were oxidized.
Wetland Rating Forms

Attachment D
Wetland name or number: A

WETLAND RATING FORM – WESTERN WASHINGTON
Version 2 - Updated July 2006 to increase accuracy and reproducibility among users
Updated Oct 2008 with the new WDFW definitions for priority habitats

Name of wetland (if known): DD-12
Date of site visit: 10-3-2012
Rated by: Pat Bunting
Trained by Ecology? Yes \ No
Date of training: May 06
SEC: 83
TWNSHP: 35
NGE: 4E
Is S/T/R in Appendix D? Yes \ No

Map of wetland unit: Figure C
Estimated size: 2000 sf

SUMMARY OF RATING

Category based on FUNCTIONS provided by wetland

I II III IV

<table>
<thead>
<tr>
<th>Category</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>>=70</td>
</tr>
<tr>
<td>II</td>
<td>51-69</td>
</tr>
<tr>
<td>III</td>
<td>30-50</td>
</tr>
<tr>
<td>IV</td>
<td><30</td>
</tr>
</tbody>
</table>

Score for Water Quality Functions: 10
Score for Hydrologic Functions: 7
Score for Habitat Functions: 9
TOTAL score for Functions: 26

Category based on SPECIAL CHARACTERISTICS of wetland

I II Does not Apply

Final Category (choose the “highest” category from above)

IV

Summary of basic information about the wetland unit

<table>
<thead>
<tr>
<th>Environmental Setting</th>
<th>Habitat Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estuarine</td>
<td>Depressional</td>
</tr>
<tr>
<td>Natural Heritage Wetland</td>
<td>Riverine</td>
</tr>
<tr>
<td>Bog</td>
<td>Lake-fringe</td>
</tr>
<tr>
<td>Mature Forest</td>
<td>Slope</td>
</tr>
<tr>
<td>Old Growth Forest</td>
<td>Flats</td>
</tr>
<tr>
<td>Coastal Lagoon</td>
<td>Freshwater Tidal</td>
</tr>
<tr>
<td>Intertidal</td>
<td></td>
</tr>
<tr>
<td>None of the above</td>
<td>Check if unit has multiple HGM classes present</td>
</tr>
</tbody>
</table>
Does the wetland unit being rated meet any of the criteria below?

If you answer YES to any of the questions below you will need to protect the wetland according to the regulations regarding the special characteristics found in the wetland.

<table>
<thead>
<tr>
<th>SP1. Has the wetland unit been documented as a habitat for any Federally listed Threatened or Endangered animal or plant species (T/E species)?</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>For the purposes of this rating system, "documented" means the wetland is on the appropriate state or federal database.</td>
<td></td>
</tr>
<tr>
<td>SP2. Has the wetland unit been documented as habitat for any State listed Threatened or Endangered animal species?</td>
<td>X</td>
</tr>
<tr>
<td>For the purposes of this rating system, "documented" means the wetland is on the appropriate state database. Note: Wetlands with State listed plant species are categorized as Category I Natural Heritage Wetlands (see p. 19 of data form).</td>
<td></td>
</tr>
<tr>
<td>SP3. Does the wetland unit contain individuals of Priority species listed by the WDFW for the state?</td>
<td>X</td>
</tr>
<tr>
<td>SP4. Does the wetland unit have a local significance in addition to its functions? For example, the wetland has been identified in the Shoreline Master Program, the Critical Areas Ordinance, or in a local management plan as having special significance.</td>
<td>X</td>
</tr>
</tbody>
</table>

To complete the next part of the data sheet you will need to determine the Hydrogeomorphic Class of the wetland being rated.

The hydrogeomorphic classification groups wetlands into those that function in similar ways. This simplifies the questions needed to answer how well the wetland functions. The Hydrogeomorphic Class of a wetland can be determined using the key below. See p. 24 for more detailed instructions on classifying wetlands.
Classification of Wetland Units in Western Washington

1. Are the water levels in the entire unit usually controlled by tides (i.e. except during floods)?

 NO → go to 2
 YES – the wetland class is Tidal Fringe

 If yes, is the salinity of the water during periods of annual low flow below 0.5 ppt (parts per thousand)?
 YES – Freshwater Tidal Fringe
 NO – Saltwater Tidal Fringe (Estuarine)

 If your wetland can be classified as a Freshwater Tidal Fringe use the forms for Riverine wetlands. If it is Saltwater Tidal Fringe it is rated as an Estuarine wetland. Wetlands that were called estuarine in the first and second editions of the rating system are called Salt Water Tidal Fringe in the Hydrogeomorphic Classification. Estuarine wetlands were categorized separately in the earlier editions, and this separation is being kept in this revision. To maintain consistency between editions, the term "Estuarine" wetland is kept. Please note, however, that the characteristics that define Category I and II estuarine wetlands have changed (see p.).

2. The entire wetland unit is flat and precipitation is the only source (>90%) of water to it. Groundwater and surface water runoff are not sources of water to the unit.
 NO → go to 3
 YES – The wetland class is Flats

 If your wetland can be classified as a "Flats" wetland, use the form for Depressional wetlands.

3. Does the entire wetland unit meet both of the following criteria?
 - The vegetated part of the wetland is on the shores of a body of permanent open water (without any vegetation on the surface) at least 20 acres (8 ha) in size;
 - At least 30% of the open water area is deeper than 6.6 ft (2 m)?

 NO → go to 4
 YES – The wetland class is Lake-fringe (Lacustrine Fringe)

4. Does the entire wetland unit meet all of the following criteria?
 - The wetland is on a slope (slope can be very gradual),
 - The water flows through the wetland in one direction (unidirectional) and usually comes from seeps. It may flow subsurface, as sheetflow, or in a swale without distinct banks.
 - The water leaves the wetland without being impounded?

 NOTE: Surface water does not pond in these type of wetlands except occasionally in very small and shallow depressions or behind hummocks (depressions are usually < 3 ft diameter and less than 1 foot deep).

 NO → go to 5
 YES – The wetland class is Slope
5. Does the entire wetland unit meet all of the following criteria?

- The unit is in a valley, or stream channel, where it gets inundated by overbank flooding from that stream or river
- The overbank flooding occurs at least once every two years.

NOTE: The riverine unit can contain depressions that are filled with water when the river is not flooding.

NO go to 6 **YES** – The wetland class is Riverine

6. Is the entire wetland unit in a topographic depression in which water ponds, or is saturated to the surface, at some time during the year. *This means that any outlet, if present, is higher than the interior of the wetland.*

NO go to 7 **YES** – The wetland class is Depressional

7. Is the entire wetland unit located in a very flat area with no obvious depression and no overbank flooding. The unit does not pond surface water more than a few inches. The unit seems to be maintained by high groundwater in the area. The wetland may be ditched, but has no obvious natural outlet.

NO go to 8 **YES** – The wetland class is Depressional

8. Your wetland unit seems to be difficult to classify and probably contains several different HGM classes. For example, seeps at the base of a slope may grade into a riverine floodplain, or a small stream within a depressional wetland has a zone of flooding along its sides. GO BACK AND IDENTIFY WHICH OF THE HYDROLOGIC REGIMES DESCRIBED IN QUESTIONS 1-7 APPLY TO DIFFERENT AREAS IN THE UNIT (make a rough sketch to help you decide). Use the following table to identify the appropriate class to use for the rating system if you have several HGM classes present within your wetland. *NOTE:* Use this table only if the class that is recommended in the second column represents 10% or more of the total area of the wetland unit being rated. If the area of the class listed in column 2 is less than 10% of the unit; classify the wetland using the class that represents more than 90% of the total area.

<table>
<thead>
<tr>
<th>Class</th>
<th>Recommended Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slope + Riverine</td>
<td>Riverine</td>
</tr>
<tr>
<td>Slope + Depressional</td>
<td>Depressional</td>
</tr>
<tr>
<td>Slope + Lake-fringe</td>
<td>Lake-fringe</td>
</tr>
<tr>
<td>Depressional + Riverine along stream within boundary</td>
<td>Depressional</td>
</tr>
<tr>
<td>Depressional + Lake-fringe</td>
<td>Depressional</td>
</tr>
<tr>
<td>Salt Water Tidal Fringe and any other class of freshwater wetland</td>
<td>Treat as ESTUARINE under wetlands with special characteristics</td>
</tr>
</tbody>
</table>

If you are unable still to determine which of the above criteria apply to your wetland, or if you have more than 2 HGM classes within a wetland boundary, classify the wetland as Depressional for the rating.
D 1. Does the wetland unit have the **potential** to improve water quality? (see p.38)

<table>
<thead>
<tr>
<th>D 1.1 Characteristics of surface water flows out of the wetland:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit is a depression with no surface water leaving it (no outlet)</td>
<td>points = 3</td>
</tr>
<tr>
<td>Unit has an intermittently flowing, OR highly constricted permanently flowing outlet</td>
<td>points = 2</td>
</tr>
<tr>
<td>Unit has an unconstricted, or slightly constricted, surface outlet (permanently flowing)</td>
<td>points = 1</td>
</tr>
<tr>
<td>Unit is a “flat” depression (Q? on key), or in the Flats class, with permanent surface outflow and no obvious natural outlet and/or outlet is a man-made ditch</td>
<td>points = 1</td>
</tr>
</tbody>
</table>

Provide photo or drawing

<table>
<thead>
<tr>
<th>S 1.2 The soil 2 inches below the surface (or duff layer) is clay or organic (use NRCS definitions)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>YES</td>
<td>points = 4</td>
</tr>
<tr>
<td>NO</td>
<td>points = 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D 1.3 Characteristics of persistent vegetation (emergent, shrub, and/or forest Cowardin class)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetland has persistent, ungrazed, vegetation > = 95% of area</td>
<td>points = 5</td>
</tr>
<tr>
<td>Wetland has persistent, ungrazed, vegetation > = 1/2 of area</td>
<td>points = 3</td>
</tr>
<tr>
<td>Wetland has persistent, ungrazed vegetation > = 1/10 of area</td>
<td>points = 1</td>
</tr>
<tr>
<td>Wetland has persistent, ungrazed vegetation < 1/10 of area</td>
<td>points = 0</td>
</tr>
</tbody>
</table>

Map of Cowardin vegetation classes

<table>
<thead>
<tr>
<th>D 1.4 Characteristics of seasonal ponding or inundation.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>This is the area of the wetland unit that is ponded for at least 2 months, but dries out sometime during the year. Do not count the area that is permanently ponded. Estimate area as the average condition 5 out of 10 yrs.</td>
<td></td>
</tr>
<tr>
<td>Area seasonally ponded is > ½ total area of wetland</td>
<td>points = 4</td>
</tr>
<tr>
<td>Area seasonally ponded is > ¼ total area of wetland</td>
<td>points = 2</td>
</tr>
<tr>
<td>Area seasonally ponded is < ¼ total area of wetland</td>
<td>points = 0</td>
</tr>
</tbody>
</table>

Map of Hydroperiods

Total for D 1

Add the points in the boxes above

| 10 |

D 2. Does the wetland unit have the **opportunity** to improve water quality? (see p.44)

Answer YES if you know or believe there are pollutants in groundwater or surface water coming into the wetland that would otherwise reduce water quality in streams, lakes or groundwater downgradient from the wetland. *Note which of the following conditions provide the sources of pollutants. A unit may have pollutants coming from several sources, but any single source would qualify as opportunity.*

- Grazing in the wetland or within 150 ft
- Untreated stormwater discharges to wetland
- Tilled fields or orchards within 150 ft of wetland
- A stream or culvert discharges into wetland that drains developed areas, residential areas, farmed fields, roads, or clear-cut logging
- Residential, urban areas, golf courses are within 150 ft of wetland
- Wetland is fed by groundwater high in phosphorus or nitrogen
- Other

| YES | multiplier is 2 |
| NO | multiplier is 1 |

TOTAL - Water Quality Functions

Multiply the score from D1 by D2

Add score to table on p. 1
Wetland Rating Form - western Washington

<table>
<thead>
<tr>
<th>D 3. Does the wetland unit have the potential to reduce flooding and erosion? (see p. 46)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D 3.1 Characteristics of surface water flows out of the wetland unit</td>
</tr>
<tr>
<td>Unit is a depression with no surface water leaving it (no outlet)</td>
</tr>
<tr>
<td>Unit has an intermittently flowing, OR highly constricted permanently flowing outlet</td>
</tr>
<tr>
<td>Unit is a "flat" depression (Q. 7 on key), or in the Flats class, with permanent surface outflow and no obvious natural outlet and/or outlet is a man-made ditch</td>
</tr>
<tr>
<td>(If ditch is not permanently flowing treat unit as "intermittently flowing")</td>
</tr>
<tr>
<td>Unit has an unconstricted, or slightly constricted, surface outlet (permanently flowing)</td>
</tr>
<tr>
<td>D 3.2 Depth of storage during wet periods</td>
</tr>
<tr>
<td>Estimate the height of ponding above the bottom of the outlet. For units with no outlet measure from the surface of permanent water or deepest part (if dry).</td>
</tr>
<tr>
<td>Marks of ponding are 3 ft or more above the surface or bottom of outlet</td>
</tr>
<tr>
<td>The wetland is a "headwater" wetland”</td>
</tr>
<tr>
<td>Marks of ponding between 2 ft to < 3 ft from surface or bottom of outlet</td>
</tr>
<tr>
<td>Marks are at least 0.5 ft to < 2 ft from surface or bottom of outlet</td>
</tr>
<tr>
<td>Unit is flat (yes to Q. 2 or Q. 7 on key) but has small depressions on the surface that trap water</td>
</tr>
<tr>
<td>Marks of ponding less than 0.5 ft</td>
</tr>
<tr>
<td>D 3.3 Contribution of wetland unit to storage in the watershed</td>
</tr>
<tr>
<td>Estimate the ratio of the area of upstream basin contributing surface water to the wetland to the area of the wetland unit itself.</td>
</tr>
<tr>
<td>The area of the basin is less than 10 times the area of the unit</td>
</tr>
<tr>
<td>The area of the basin is 10 to 100 times the area of the unit</td>
</tr>
<tr>
<td>The area of the basin is more than 100 times the area of the unit</td>
</tr>
<tr>
<td>Entire unit is in the FLATS class</td>
</tr>
<tr>
<td>D Total for D 3</td>
</tr>
<tr>
<td>D 4. Does the wetland unit have the opportunity to reduce flooding and erosion? (see p. 49)</td>
</tr>
<tr>
<td>Answer YES if the unit is in a location in the watershed where the flood storage, or reduction in water velocity, it provides helps protect downstream property and aquatic resources from flooding or excessive and/or erosive flows. Answer NO if the water coming into the wetland is controlled by a structure such as flood gate, tide gate, flap valve, reservoir etc. OR you estimate that more than 90% of the water in the wetland is from groundwater in areas where damaging groundwater flooding does not occur.</td>
</tr>
<tr>
<td>Note which of the following indicators of opportunity apply.</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Wetland is in a headwater of a river or stream that has flooding problems</td>
</tr>
<tr>
<td>Wetland drains to a river or stream that has flooding problems</td>
</tr>
<tr>
<td>Wetland has no outlet and impounds surface runoff water that might otherwise flow into a river or stream that has flooding problems</td>
</tr>
<tr>
<td>Other</td>
</tr>
<tr>
<td>YES multiplier is 2</td>
</tr>
<tr>
<td>TOTAL - Hydrologic Functions Multiply the score from D 3 by D 4</td>
</tr>
<tr>
<td>Add score to table on p. 1</td>
</tr>
</tbody>
</table>
H 1. Does the wetland unit have the potential to provide habitat for many species?

H 1.1 Vegetation structure (see p. 72)

Check the types of vegetation classes present (as defined by Cowardin). Size threshold for each class is ¼ acre or more than 10% of the area if unit is smaller than 2.5 acres.

Aquatic bed

Emergent plants

Scrub/shrub (areas where shrubs have >30% cover)

Forested (areas where trees have >30% cover)

If the unit has a forested class check if:

- The forested class has 3 out of 5 strata (canopy, sub-canopy, shrubs, herbaceous, moss/ground-cover) that each cover 20% within the forested polygon

Add the number of vegetation structures that qualify. If you have:

- 4 structures or more points = 4
- 3 structures points = 2
- 2 structures points = 1
- 1 structure points = 0

Map of Cowardin vegetation classes

H 1.2. Hydroperiods (see p. 73)

Check the types of water regimes (hydroperiods) present within the wetland. The water regime has to cover more than 10% of the wetland or ¼ acre to count. (see text for descriptions of hydroperiods)

- Permanently flooded or inundated 4 or more types present points = 3
- Seasonally flooded or inundated 3 types present points = 2
- Occasionally flooded or inundated 2 types present point = 1
- Saturated only 1 type present points = 0
- Permanently flowing stream or river in, or adjacent to, the wetland
- Seasonally flowing stream in, or adjacent to, the wetland
- Lake-fringe wetland = 2 points
- Freshwater tidal wetland = 2 points

Map of hydroperiods

H 1.3. Richness of Plant Species (see p. 75)

Count the number of plant species in the wetland that cover at least 10 ft². (different patches of the same species can be combined to meet the size threshold)

You do not have to name the species.

Do not include Eurasian Milfoil, reed canarygrass, purple loosestrife, Canadian Thistle

If you counted:

- > 19 species points = 2
- 5 - 19 species points = 1
- < 5 species points = 0

List species below if you want to:

Total for page
H 1.4. Interspersion of habitats (see p. 76)

Decide from the diagrams below whether interspersion between Cowardin vegetation classes (described in H 1.1), or the classes and unvegetated areas (can include open water or mudflats) is high, medium, low, or none.

None = 0 points
Low = 1 point
Moderate = 2 points
High = 3 points

NOTE: If you have four or more classes or three vegetation classes and open water the rating is always “high”. Use map of Cowardin vegetation classes.

H 1.5. Special Habitat Features: (see p. 77)

Check the habitat features that are present in the wetland. The number of checks is the number of points you put into the next column.

- Large, downed, woody debris within the wetland (>4in. diameter and 6 ft long).
- Standing snags (diameter at the bottom > 4 inches) in the wetland
- Undercut banks are present for at least 6.6 ft (2m) and/or overhanging vegetation extends at least 3.3 ft (1m) over a stream (or ditch) in, or contiguous with the unit, for at least 33 ft (10m)
- Stable steep banks of fine material that might be used by beaver or muskrat for denning (>30degree slope) OR signs of recent beaver activity are present (cut shrubs or trees that have not yet turned grey/brown)
- At least ¼ acre of thin-stemmed persistent vegetation or woody branches are present in areas that are permanently or seasonally inundated (structures for egg-laying by amphibians)
- Invasive plants cover less than 25% of the wetland area in each stratum of plants

NOTE: The 20% stated in early printings of the manual on page 78 is an error.

H 1. TOTAL Score - potential for providing habitat

Add the scores from H1.1, H1.2, H1.3, H1.4, H1.5

Comments
H 2. Does the wetland unit have the opportunity to provide habitat for many species?

<table>
<thead>
<tr>
<th>H 2.1 Buffers (see p. 80)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choose the description that best represents condition of buffer of wetland unit. The highest scoring criterion that applies to the wetland is to be used in the rating. See text for definition of “undisturbed.”</td>
</tr>
<tr>
<td>Option</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>-</td>
</tr>
</tbody>
</table>

If buffer does not meet any of the criteria above

- No paved areas (except paved trails) or buildings within 25 m (80 ft) of wetland > 95% circumference. Light to moderate grazing, or lawns are OK. | Points = 2 |
- No paved areas or buildings within 50 m of wetland for >50% circumference. Light to moderate grazing, or lawns are OK. | Points = 2 |
- Heavy grazing in buffer. | Points = 1 |
- Vegetated buffers are <2 m wide (6.6 ft) for more than 95% of the circumference (e.g. tilled fields, paving, basalt bedrock extend to edge of wetland) | Points = 0. |
- Buffer does not meet any of the criteria above. | Points = 1 |

H 2.2 Corridors and Connections (see p. 81)

- **H 2.2.1 Is the wetland part of a relatively undisturbed and unbroken vegetated corridor (either riparian or upland) that is at least 150 ft wide, has at least 30% cover of shrubs, forest or native undisturbed prairie, that connects to estuaries, other wetlands or undisturbed uplands that are at least 250 acres in size? (dams in riparian corridors, heavily used gravel roads, paved roads, are considered breaks in the corridor).**
 - YES = 4 points (go to H 2.3)
 - NO = go to H 2.2.2

- **H 2.2.2 Is the wetland part of a relatively undisturbed and unbroken vegetated corridor (either riparian or upland) that is at least 50 ft wide, has at least 30% cover of shrubs or forest, and connects to estuaries, other wetlands or undisturbed uplands that are at least 25 acres in size? OR a Lake-fringe wetland, if it does not have an undisturbed corridor as in the question above?**
 - YES = 2 points (go to H 2.3)
 - NO = H 2.2.3

- **H 2.2.3 Is the wetland: within 5 mi (8 km) of a brackish or salt water estuary OR within 3 mi of a large field or pasture (>40 acres) OR within 1 mi of a lake greater than 20 acres?**
 - YES = 1 point
 - NO = 0 points

Total for page 4
Which of the following priority habitats are within 330ft (100m) of the wetland unit? *NOTE: the connections do not have to be relatively undisturbed.*

- **Aspen Stands:** Pure or mixed stands of aspen greater than 0.4 ha (1 acre).
- **Biodiversity Areas and Corridors:** Areas of habitat that are relatively important to various species of native fish and wildlife *(full descriptions in WDFW PHS report p. 152).*
- **Herbaceous Balds:** Variable size patches of grass and forbs on shallow soils over bedrock.
- **Old-growth/Mature forests:** (Old-growth west of Cascade crest) Stands of at least 2 tree species, forming a multi-layered canopy with occasional small openings; with at least 20 trees/ha (8 trees/acre) > 81 cm (32 in) dbh or > 200 years of age. (Mature forests) Stands with average diameters exceeding 53 cm (21 in) dbh; crown cover may be less than 100%; decay, decadence, numbers of snags, and quantity of large downed material is generally less than that found in old-growth; 80 - 200 years old west of the Cascade crest.
- **Oregon white Oak:** Woodlands Stands of pure oak or oak/conifer associations where canopy coverage of the oak component is important *(full descriptions in WDFW PHS report p. 158).*
- **Riparian:** The area adjacent to aquatic systems with flowing water that contains elements of both aquatic and terrestrial ecosystems which mutually influence each other.
- **Westside Prairies:** Herbaceous, non-forested plant communities that can either take the form of a dry prairie or a wet prairie *(full descriptions in WDFW PHS report p. 161).*
- **Instream:** The combination of physical, biological, and chemical processes and conditions that interact to provide functional life history requirements for instream fish and wildlife resources.
- **Nearshore:** Relatively undisturbed nearshore habitats. These include Coastal Nearshore, Open Coast Nearshore, and Puget Sound Nearshore. *(full descriptions of habitats and the definition of relatively undisturbed are in WDFW report: pp. 167-169 and glossary in Appendix A).*
- **Caves:** A naturally occurring cavity, recess, void, or system of interconnected passages under the earth in soils, rock, ice, or other geological formations and is large enough to contain a human.
- **Cliffs:** Greater than 7.6 m (25 ft) high and occurring below 5000 ft.
- **Talus:** Homogenous areas of rock rubble ranging in average size 0.15 - 2.0 m (0.5 - 6.5 ft), composed of basalt, andesite, and/or sedimentary rock, including riprap slides and mine tailings. May be associated with cliffs.
- **Snags and Logs:** Trees are considered snags if they are dead or dying and exhibit sufficient decay characteristics to enable cavity excavation/use by wildlife. Priority snags have a diameter at breast height of > 51 cm (20 in) in western Washington and arc > 2 m (6.5 ft) in height. Priority logs are > 30 cm (12 in) in diameter at the largest end, and > 6 m (20 ft) long.

If wetland has **3 or more** priority habitats = **4 points**

If wetland has **2** priority habitats = **3 points**

If wetland has **1** priority habitat = **1 point**

No habitats = **0 points**

Note: All vegetated wetlands are by definition a priority habitat but are not included in this list. Nearby wetlands are addressed in question H 2.4.
H 2.4 Wetland Landscape (choose the one description of the landscape around the wetland that best fits) (see p. 84)

<table>
<thead>
<tr>
<th>Description</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>There are at least 3 other wetlands within ½ mile, and the connections between them are relatively undisturbed (light grazing between wetlands OK, as is lake shore with some boating, but connections should NOT be bisected by paved roads, fill, fields, or other development.</td>
<td>5</td>
</tr>
<tr>
<td>The wetland is Lake-fringe on a lake with little disturbance and there are 3 other lake-fringe wetlands within ½ mile</td>
<td>5</td>
</tr>
<tr>
<td>There are at least 3 other wetlands within ½ mile, BUT the connections between them are disturbed</td>
<td>3</td>
</tr>
<tr>
<td>The wetland is Lake-fringe on a lake with disturbance and there are 3 other lake-fringe wetlands within ½ mile</td>
<td>3</td>
</tr>
<tr>
<td>There is at least 1 wetland within ½ mile.</td>
<td>2</td>
</tr>
<tr>
<td>There are no wetlands within ½ mile.</td>
<td>0</td>
</tr>
</tbody>
</table>

H 2. TOTAL Score - opportunity for providing habitat

Add the scores from H2.1, H2.2, H2.3, H2.4

TOTAL for H1 from page 14

<table>
<thead>
<tr>
<th>Total Score for Habitat Functions – add the points for H 1, H 2 and record the result on p. 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
</tr>
</tbody>
</table>

Wetland Rating Form – western Washington 17 August 2004

version 2. Updated with new WDFW definitions Oct. 2008
CATEGORIZATION BASED ON SPECIAL CHARACTERISTICS

Please determine if the wetland meets the attributes described below and circle the appropriate answers and Category.

<table>
<thead>
<tr>
<th>Wetland Type</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC 1.0 Estuarine wetlands (see p. 86)</td>
<td>Cat. I</td>
</tr>
<tr>
<td>Does the wetland unit meet the following criteria for Estuarine wetlands?</td>
<td></td>
</tr>
<tr>
<td>— The dominant water regime is tidal,</td>
<td>NO</td>
</tr>
<tr>
<td>— Vegetated, and</td>
<td></td>
</tr>
<tr>
<td>— With a salinity greater than 0.5 ppt.</td>
<td></td>
</tr>
<tr>
<td>YES = Go to SC 1.1</td>
<td></td>
</tr>
<tr>
<td>SC 1.1 Is the wetland unit within a National Wildlife Refuge, National Park, National Estuary Reserve, Natural Area Preserve, State Park or Educational, Environmental, or Scientific Reserve designated under WAC 332-30-151?</td>
<td></td>
</tr>
<tr>
<td>YES = Category I</td>
<td></td>
</tr>
<tr>
<td>NO go to SC 1.2</td>
<td></td>
</tr>
<tr>
<td>SC 1.2 Is the wetland unit at least 1 acre in size and meets at least two of the following three conditions? YES = Category I NO = Category II</td>
<td></td>
</tr>
<tr>
<td>— The wetland is relatively undisturbed (has no diking, ditching, filling, cultivation, grazing, and has less than 10% cover of non-native plant species. If the non-native Spatina spp. are the only species that cover more than 10% of the wetland, then the wetland should be given a dual rating (II/I). The area of Spatina would be rated a Category II while the relatively undisturbed upper marsh with native species would be a Category I. Do not, however, exclude the area of Spatina in determining the size threshold of 1 acre.</td>
<td>Cat. I</td>
</tr>
<tr>
<td>— At least ¾ of the landward edge of the wetland has a 100 ft buffer of shrub, forest, or un-grazed or un-mowed grassland.</td>
<td>Cat. II</td>
</tr>
<tr>
<td>— The wetland has at least 2 of the following features: tidal channels, depressions with open water, or contiguous freshwater wetlands.</td>
<td>Dual rating I/II</td>
</tr>
</tbody>
</table>
SC 2.0 Natural Heritage Wetlands *(see p. 87)*
Natural Heritage wetlands have been identified by the Washington Natural Heritage Program/DNR as either high quality undisturbed wetlands or wetlands that support state Threatened, Endangered, or Sensitive plant species.

SC 2.1 Is the wetland unit being rated in a Section/Township/Range that contains a Natural Heritage wetland? *(this question is used to screen out most sites before you need to contact WNHP/DNR)*
S/T/R information from Appendix D ___ or accessed from WNHP/DNR web site ___

YES ___ contact WNHP/DNR (see p. 79) and go to SC 2.2 **NO** ___

SC 2.2 Has DNR identified the wetland as a high quality undisturbed wetland or as or as a site with state threatened or endangered plant species?

YES = Category I **NO** ___ not a Heritage Wetland

SC 3.0 Bogs *(see p. 87)*
Does the wetland unit (or any part of the unit) meet both the criteria for soils and vegetation in bogs? *Use the key below to identify if the wetland is a bog. If you answer yes you will still need to rate the wetland based on its functions.*

1. Does the unit have organic soil horizons (i.e. layers of organic soil), either peats or mucks, that compose 16 inches or more of the first 32 inches of the soil profile? *(See Appendix B for a field key to identify organic soils)*? **Yes** - go to Q. 3 **No** - go to Q. 2

2. Does the unit have organic soils, either peats or mucks that are less than 16 inches deep over bedrock, or an impermeable hardpan such as clay or volcanic ash, or that are floating on a lake or pond?

Yes - go to Q. 3 **No** - Is not a bog for purpose of rating

3. Does the unit have more than 70% cover of mosses at ground level, AND other plants, if present, consist of the "bog" species listed in Table 3 as a significant component of the vegetation (more than 30% of the total shrub and herbaceous cover consists of species in Table 3)?

Yes - Is a bog for purpose of rating **No** - go to Q. 4

NOTE: If you are uncertain about the extent of mosses in the understory you may substitute that criterion by measuring the pH of the water that seeps into a hole dug at least 16" deep. If the pH is less than 5.0 and the "bog" plant species in Table 3 are present, the wetland is a bog.

1. Is the unit forested (> 30% cover) with sitka spruce, subalpine fir, western red cedar, western hemlock, lodgepole pine, quaking aspen, Engleman’s spruce, or western white pine, WITH any of the species (or combination of species) on the bog species plant list in Table 3 as a significant component of the ground cover (> 30% coverage of the total shrub/herbaceous cover)?

YES = Category I **No** ___ Is not a bog for purpose of rating

Wetland Rating Form – western Washington 19
August 2004
version 2 Updated with new WDFW definitions Oct. 2008
SC 4.0 Forested Wetlands (see p. 90)

Does the wetland unit have at least 1 acre of forest that meet one of these criteria for the Department of Fish and Wildlife's forests as priority habitats? *If you answer yes you will still need to rate the wetland based on its functions.*

- **Old-growth forests**: (west of Cascade crest) Stands of at least two tree species, forming a multi-layered canopy with occasional small openings; with at least 8 trees/acre (20 trees/hectare) that are at least 200 years of age OR have a diameter at breast height (dbh) of 32 inches (81 cm) or more.

 NOTE: The criterion for dbh is based on measurements for upland forests. Two-hundred year old trees in wetlands will often have a smaller dbh because their growth rates are often slower. The DFW criterion is and “OR” so old-growth forests do not necessarily have to have trees of this diameter.

- **Mature forests**: (west of the Cascade Crest) Stands where the largest trees are 80 – 200 years old OR have average diameters (dbh) exceeding 21 inches (53 cm); crown cover may be less that 100%; decay, decadence, numbers of snags, and quantity of large downed material is generally less than that found in old-growth.

 YES = Category I

 NO = not a forested wetland with special characteristics

SC 5.0 Wetlands in Coastal Lagoons (see p. 91)

Does the wetland meet all of the following criteria of a wetland in a coastal lagoon?

- The wetland lies in a depression adjacent to marine waters that is wholly or partially separated from marine waters by sandbanks, gravel banks, shingle, or, less frequently, rocks

- The lagoon in which the wetland is located contains surface water that is saline or brackish (> 0.5 ppt) during most of the year in at least a portion of the lagoon *(needs to be measured near the bottom)*

 YES = Go to SC 5.1

 NO = not a wetland in a coastal lagoon

SC 5.1 Does the wetland meets all of the following three conditions?

- The wetland is relatively undisturbed (has no diking, ditching, filling, cultivation, grazing), and has less than 20% cover of invasive plant species (see list of invasive species on p. 74).

- At least ¾ of the landward edge of the wetland has a 100 ft buffer of shrub, forest, or un-grazed or un-mowed grassland.

- The wetland is larger than 1/10 acre (4350 square feet)

 YES = Category I

 NO = Category II
SC 6.0 Interdunal Wetlands (see p. 93)
Is the wetland unit west of the 1889 line (also called the Western Boundary of Upland Ownership or WBUO)?
YES - go to SC 6.1
NO - not an interdunal wetland for rating
 If you answer yes you will still need to rate the wetland based on its functions.
In practical terms that means the following geographic areas:
- Long Beach Peninsula- lands west of SR 103
- Grayland-Westport- lands west of SR 105
- Ocean Shores-Copalis- lands west of SR 115 and SR 109
SC 6.1 Is the wetland one acre or larger, or is it in a mosaic of wetlands that is once acre or larger?
 YES = Category II
 NO - go to SC 6.2
SC 6.2 Is the unit between 0.1 and 1 acre, or is it in a mosaic of wetlands that is between 0.1 and 1 acre?
 YES = Category III
 NO - go to SC 6.2
Choose the highest rating if wetland falls into several categories and record on
p. 1
If you answered NO for all types enter “Not Applicable” on p. 1
WETLAND RATING FORM – WESTERN WASHINGTON
Version 2 - Updated July 2006 to increase accuracy and reproducibility among users
Updated Oct 2008 with the new WDFW definitions for priority habitats

Name of wetland (if known): DD-12 Date of site visit: 10-3-2012
Rated by Pat Bunting Trained by Ecology? Yes No Date of training: May 06
SEC: 4 TWNSHP: 34 RANGE: 4E Is S/T/R in Appendix D? Yes No

Map of wetland unit: Figure C Estimated size 25.25 AC

SUMMARY OF RATING

Category based on FUNCTIONS provided by wetland

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Score for Water Quality Functions</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Score for Hydrologic Functions</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Score for Habitat Functions</td>
<td></td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL score for Functions</td>
<td></td>
<td></td>
<td>68</td>
<td></td>
</tr>
</tbody>
</table>

Category based on SPECIAL CHARACTERISTICS of wetland

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>Does not Apply</th>
</tr>
</thead>
</table>

Final Category (choose the “highest” category from above)

Summary of basic information about the wetland unit

<table>
<thead>
<tr>
<th>Wetland Unit and Special</th>
<th>Depressional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estuarine</td>
<td></td>
</tr>
<tr>
<td>Natural Heritage Wetland</td>
<td>Riverine</td>
</tr>
<tr>
<td>Bog</td>
<td>Lake-fringe</td>
</tr>
<tr>
<td>Mature Forest</td>
<td>Slope</td>
</tr>
<tr>
<td>Old Growth Forest</td>
<td>Flats</td>
</tr>
<tr>
<td>Coastal Lagoon</td>
<td>Freshwater Tidal</td>
</tr>
<tr>
<td>Intertidal</td>
<td></td>
</tr>
<tr>
<td>None of the above</td>
<td>Check if unit has multiple HGM classes present</td>
</tr>
</tbody>
</table>

Wetland Rating Form – western Washington version 2 To be used with Ecology Publication 04-06-025

August 2004
Does the wetland unit being rated meet any of the criteria below?

If you answer YES to any of the questions below you will need to protect the wetland according to the regulations regarding the special characteristics found in the wetland.

<table>
<thead>
<tr>
<th>SP1. Has the wetland unit been documented as a habitat for any Federally listed Threatened or Endangered animal or plant species (T/E species)?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
</tr>
</tbody>
</table>

For the purposes of this rating system, "documented" means the wetland is on the appropriate state or federal database.

<table>
<thead>
<tr>
<th>SP2. Has the wetland unit been documented as habitat for any State listed Threatened or Endangered animal species?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
</tr>
</tbody>
</table>

For the purposes of this rating system, "documented" means the wetland is on the appropriate state database. Note: Wetlands with State listed plant species are categorized as Category I Natural Heritage Wetlands (see p. 19 of data form).

<table>
<thead>
<tr>
<th>SP3. Does the wetland unit contain individuals of Priority species listed by the WDFW for the state?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SP4. Does the wetland unit have a local significance in addition to its functions?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
</tr>
</tbody>
</table>

For example, the wetland has been identified in the Shoreline Master Program, the Critical Areas Ordinance, or in a local management plan as having special significance.

To complete the next part of the data sheet you will need to determine the Hydrogeomorphic Class of the wetland being rated.

The hydrogeomorphic classification groups wetlands into those that function in similar ways. This simplifies the questions needed to answer how well the wetland functions. The Hydrogeomorphic Class of a wetland can be determined using the key below. See p. 24 for more detailed instructions on classifying wetlands.
Classification of Wetland Units in Western Washington

1. Are the water levels in the entire unit usually controlled by tides (i.e. except during floods)?
 NO – go to 2 YES – the wetland class is Tidal Fringe

 If yes, is the salinity of the water during periods of annual low flow below 0.5 ppt (parts per thousand)?
 YES – Freshwater Tidal Fringe NO – Saltwater Tidal Fringe (Estuarine)

 If your wetland can be classified as a Freshwater Tidal Fringe use the forms for Riverine wetlands. If it is Saltwater Tidal Fringe it is rated as an Estuarine wetland. Wetlands that were called estuarine in the first and second editions of the rating system are called Salt Water Tidal Fringe in the Hydrogeomorphic Classification. Estuarine wetlands were categorized separately in the earlier editions, and this separation is being kept in this revision. To maintain consistency between editions, the term “Estuarine” wetland is kept. Please note, however, that the characteristics that define Category I and II estuarine wetlands have changed.

 2. The entire wetland unit is flat and precipitation is the only source (>90%) of water to it. Groundwater and surface water runoff are NOT sources of water to the unit.
 NO – go to 3 YES – The wetland class is Flats

 If your wetland can be classified as a “Flats” wetland, use the form for Depressional wetlands.

 3. Does the entire wetland unit meet both of the following criteria?
 _ The vegetated part of the wetland is on the shores of a body of permanent open water (without any vegetation on the surface) at least 20 acres (8 ha) in size;
 _ At least 30% of the open water area is deeper than 6.6 ft (2 m)?
 NO – go to 4 YES – The wetland class is Lake-fringe (Lacustrine Fringe)

 4. Does the entire wetland unit meet all of the following criteria?
 _ The wetland is on a slope (slope can be very gradual),
 _ The water flows through the wetland in one direction (unidirectional) and usually comes from seeps. It may flow subsurface, as sheetflow, or in a swale without distinct banks.
 _ The water leaves the wetland without being impounded?

 NOTE: Surface water does not pond in these type of wetlands except occasionally in very small and shallow depressions or behind hummocks (depressions are usually ~3ft diameter and less than 1 foot deep).
 NO – go to 5 YES – The wetland class is Slope
5. Does the entire wetland unit meet all of the following criteria?
 ☒ The unit is in a valley, or stream channel, where it gets inundated by overbank flooding from that stream or river.
 ☒ The overbank flooding occurs at least once every two years.
 NOTE: The riverine unit can contain depressions that are filled with water when the river is not flooding.
 NO - go to 6 YES - The wetland class is Riverine

6. Is the entire wetland unit in a topographic depression in which water ponds, or is saturated to the surface, at some time during the year. This means that any outlet, if present, is higher than the interior of the wetland.
 NO - go to 7 YES - The wetland class is Depressional

7. Is the entire wetland unit located in a very flat area with no obvious depression and no overbank flooding. The unit does not pond surface water more than a few inches. The unit seems to be maintained by high groundwater in the area. The wetland may be ditched, but has no obvious natural outlet.
 NO - go to 8 YES - The wetland class is Depressional

8. Your wetland unit seems to be difficult to classify and probably contains several different HGM classes. For example, seeps at the base of a slope may grade into a riverine floodplain, or a small stream within a depressional wetland has a zone of flooding along its sides. GO BACK AND IDENTIFY WHICH OF THE HYDROLOGIC REGIMES DESCRIBED IN QUESTIONS 1-7 APPLY TO DIFFERENT AREAS IN THE UNIT (make a rough sketch to help you decide). Use the following table to identify the appropriate class to use for the rating system if you have several HGM classes present within your wetland. **NOTE:** Use this table only if the class that is recommended in the second column represents 10% or more of the total area of the wetland unit being rated. If the area of the class listed in column 2 is less than 10% of the unit; classify the wetland using the class that represents more than 90% of the total area.

<table>
<thead>
<tr>
<th>Class 1</th>
<th>Class 2</th>
<th>HGM Class for Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slope + Riverine</td>
<td>Riverine</td>
<td>Riverine</td>
</tr>
<tr>
<td>Slope + Depressional</td>
<td>Depressional</td>
<td>Depressional</td>
</tr>
<tr>
<td>Slope + Lake-fringe</td>
<td>Lake-fringe</td>
<td>Lake-fringe</td>
</tr>
<tr>
<td>Depressional + Riverine along stream within boundary</td>
<td>Depressional</td>
<td>Depressional</td>
</tr>
<tr>
<td>Depressional + Lake-fringe</td>
<td>Depressional</td>
<td>Depressional</td>
</tr>
<tr>
<td>Salt Water Tidal Fringe and any other class of freshwater wetland</td>
<td>Treat as ESTUARINE under wetlands with special characteristics</td>
<td></td>
</tr>
</tbody>
</table>

If you are unable still to determine which of the above criteria apply to your wetland, or if you have more than 2 HGM classes within a wetland boundary, classify the wetland as Depressional for the rating.
D 1. Does the wetland unit have the potential to improve water quality?

D 1.1 Characteristics of surface water flows out of the wetland:
- Unit is a depression with no surface water leaving it (no outlet) points = 3
- Unit has an intermittently flowing, OR highly constricted permanently flowing outlet points = 2
- Unit has an unconstricted, or slightly constricted, surface outlet \((\text{permanently flowing}) \) points = 1
- Unit is a "flat" depression (Q. 7 on key), or in the Flats class, with permanent surface outflow and **no obvious natural outlet** and/or outlet is a man-made ditch points = 1

\[\text{(If ditch is not permanently flowing treat unit as "intermittently flowing")} \]

Provide photo or drawing

S 1.2 The soil 2 inches below the surface (or duff layer) is clay or organic (use NRCS definitions)
- YES points = 4
- NO points = 0

D 1.3 Characteristics of persistent vegetation (emergent, shrub, and/or forest Cowardin class)
- Wetland has persistent, ungrazed, vegetation \(> = 95\% \) of area points = 5
- Wetland has persistent, ungrazed, vegetation \(> = 1/2 \) of area points = 3
- Wetland has persistent, ungrazed vegetation \(> = 1/10 \) of area points = 1
- Wetland has persistent, ungrazed vegetation \(< 1/10 \) of area points = 0

Map of Cowardin vegetation classes

D 1.4 Characteristics of seasonal ponding or inundation.
- **This is the area of the wetland unit that is ponded for at least 2 months, but dries out sometime during the year. Do not count the area that is permanently ponded. Estimate area as the average condition 5 out of 10 yrs.**
- Area seasonally ponded is \(> 1/4 \) total area of wetland points = 4
- Area seasonally ponded is \(> 1/4 \) total area of wetland points = 2
- Area seasonally ponded is \(< 1/4 \) total area of wetland points = 0

Map of Hydroperiods

Total for D 1

Add the points in the boxes above

D 2. Does the wetland unit have the opportunity to improve water quality?

Answer **YES** if you know or believe there are pollutants in groundwater or surface water coming into the wetland that would otherwise reduce water quality in streams, lakes or groundwater downgradient from the wetland. **Note which of the following conditions provide the sources of pollutants. A unit may have pollutants coming from several sources, but any single source would qualify as opportunity.**

- \(\checkmark \) Grazing in the wetland or within 150 ft
- Untreated stormwater discharges to wetland
- Tilled fields or orchards within 150 ft of wetland
- A stream or culvert discharges into wetland that drains developed areas, residential areas, farmed fields, roads, or clear-cut logging
- Residential, urban areas, golf courses are within 150 ft of wetland
- Wetland is fed by groundwater high in phosphorus or nitrogen
- Other

YES multiplier is 2 **NO** multiplier is 1

TOTAL - Water Quality Functions

Multiply the score from D1 by D2

Add score to table on p. 1

22
Wetland name or number: __________

Depressional and Flats Wetlands

HYDROLOGIC FUNCTIONS - Indicators that the wetland unit functions to reduce flooding and stream degradation

Points

<table>
<thead>
<tr>
<th>D 3. Does the wetland unit have the potential to reduce flooding and erosion?</th>
<th>(see p. 46)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D 3.1 Characteristics of surface water flows out of the wetland unit</td>
<td></td>
</tr>
<tr>
<td>Unit is a depression with no surface water leaving it (no outlet)</td>
<td>points = 4</td>
</tr>
<tr>
<td>Unit has an intermittently flowing, OR highly constricted permanently flowing outlet</td>
<td>points = 2</td>
</tr>
<tr>
<td>Unit is a “flat” depression (Q. 7 on key), or in the Flats class, with permanent surface outflow and no obvious natural outlet and/or outlet is a man-made ditch</td>
<td>points = 1</td>
</tr>
<tr>
<td>(If ditch is not permanently flowing treat unit as “intermittently flowing”)</td>
<td></td>
</tr>
<tr>
<td>Unit has an unconfined, or slightly constricted, surface outlet (permanently flowing)</td>
<td>points = 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D 3.2 Depth of storage during wet periods</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimate the height of ponding above the bottom of the outlet. For units with no outlet measure from the surface of permanent water or deepest part (if dry).</td>
<td></td>
</tr>
<tr>
<td>Marks of ponding are 3 ft or more above the surface or bottom of outlet</td>
<td>points = 7</td>
</tr>
<tr>
<td>The wetland is a “headwater” wetland</td>
<td>points = 5</td>
</tr>
<tr>
<td>Marks of ponding between 2 ft to < 3 ft from surface or bottom of outlet</td>
<td>points = 5</td>
</tr>
<tr>
<td>Marks are at least 0.5 ft to < 2 ft from surface or bottom of outlet</td>
<td>points = 3</td>
</tr>
<tr>
<td>Unit is flat (yes to Q. 2 or Q. 7 on key) but has small depressions on the surface that trap water</td>
<td>points = 1</td>
</tr>
<tr>
<td>Marks of ponding less than 0.5 ft</td>
<td>points = 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D 3.3 Contribution of wetland unit to storage in the watershed</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimate the ratio of the area of upstream basin contributing surface water to the wetland to the area of the wetland unit itself.</td>
<td></td>
</tr>
<tr>
<td>The area of the basin is less than 10 times the area of unit</td>
<td>points = 5</td>
</tr>
<tr>
<td>The area of the basin is 10 to 100 times the area of the unit</td>
<td>points = 3</td>
</tr>
<tr>
<td>The area of the basin is more than 100 times the area of the unit</td>
<td>points = 0</td>
</tr>
<tr>
<td>Entire unit is in the FLATS class</td>
<td>points = 5</td>
</tr>
</tbody>
</table>

Total for D 3

<table>
<thead>
<tr>
<th>Add the points in the boxes above</th>
<th>(see p. 49)</th>
</tr>
</thead>
</table>

D 4. Does the wetland unit have the **opportunity** to reduce flooding and erosion?

Answer YES if the unit is in a location in the watershed where the flood storage, or reduction in water velocity, it provides helps protect downstream property and aquatic resources from flooding or excessive and/or erosive flows. Answer NO if the water coming into the wetland is controlled by a structure such as flood gate, tide gate, flap valve, reservoir etc. OR you estimate that more than 90% of the water in the wetland is from groundwater in areas where damaging groundwater flooding does not occur.

Note which of the following indicators of opportunity apply.

- Wetland is in a headwater of a river or stream that has flooding problems
- Wetland drains to a river or stream that has flooding problems
- Wetland has no outlet and impounds surface runoff water that might otherwise flow into a river or stream that has flooding problems

Other

YES multiplier is 2 **NO** multiplier is 1

TOTAL - Hydrologic Functions

Multiply the score from D 3 by D 4

Add score to table on p. 1

Wetland Rating Form – western Washington 6 August 2004

version 2 Updated with new WDFW definitions Oct. 2008
H 1. Does the wetland unit have the potential to provide habitat for many species?

H 1.1 Vegetation structure (see p. 72)

Check the types of vegetation classes present (as defined by Cowardin). Size threshold for each class is ¼ acre or more than 10% of the area if unit is smaller than 2.5 acres.

- Aquatic bed
- Emergent plants
- Scrub/shrub (areas where shrubs have >30% cover)
- Forested (areas where trees have >30% cover)

If the unit has a forested class check if:

If the forested class has 3 out of 5 strata (canopy, sub-canopy, shrubs, herbaceous, moss/ground-cover) that each cover 20% within the forested polygon.

Add the number of vegetation structures that qualify. If you have:

<table>
<thead>
<tr>
<th>Structures</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 or more</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Map of Cowardin vegetation classes

H 1.2. Hydroperiods (see p. 73)

Check the types of water regimes (hydroperiods) present within the wetland. The water regime has to cover more than 10% of the wetland or ¼ acre to count. (see text for descriptions of hydroperiods)

- Permanently flooded or inundated
- Seasonally flooded or inundated
- Occasionally flooded or inundated
- Saturated only
- Permanently flowing stream or river in, or adjacent to, the wetland
- Seasonally flowing stream in, or adjacent to, the wetland
- Lake-fringe wetland = 2 points
- Freshwater tidal wetland = 2 points

Map of hydroperiods

H 1.3. Richness of Plant Species (see p. 75)

Count the number of plant species in the wetland that cover at least 10 ft². (*different patches of the same species can be combined to meet the size threshold*)

You do not have to name the species.

Do not include Eurasian Milfoil, reed canarygrass, purple loosestrife, Canadian Thistle.

If you counted:

- > 19 species = 2 points
- 5 - 19 species = 1 point
- < 5 species = 0 points

List species below if you want to:

<table>
<thead>
<tr>
<th>Species</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 5 species</td>
<td>0</td>
</tr>
</tbody>
</table>

Total for page 8
H 1.4. Interspersion of habitats (see p. 76)

Decide from the diagrams below whether interspersion between Cowardin vegetation classes (described in H 1.1), or the classes and unvegetated areas (can include open water or mudflats) is high, medium, low, or none.

None = 0 points Low = 1 point Moderate = 2 points High = 3 points

[riparian braided channels]

NOTE: If you have four or more classes or three vegetation classes and open water the rating is always "high". Use map of Cowardin vegetation classes.

H 1.5. Special Habitat Features: (see p. 77)

Check the habitat features that are present in the wetland. The number of checks is the number of points you put into the next column.

- Large, downed, woody debris within the wetland (>4in. diameter and 6 ft long).
- Standing snags (diameter at the bottom > 4 inches) in the wetland
- Undercut banks are present for at least 6.6 ft (2m) and/or overhanging vegetation extends at least 3.3 ft (1m) over a stream (or ditch) in, or contiguous with the unit, for at least 33 ft (10m)
- Stable steep banks of fine material that might be used by beaver or muskrat for denning (>30degree slope) OR signs of recent beaver activity are present (cut shrubs or trees that have not yet turned grey/brown)
- At least ¼ acre of thin-stemmed persistent vegetation or woody branches are present in areas that are permanently or seasonally inundated (structures for egg-laying by amphibians)
- Invasive plants cover less than 25% of the wetland area in each stratum of plants

NOTE: The 20% stated in early printings of the manual on page 78 is an error.

H 1. TOTAL Score - potential for providing habitat
Add the scores from H1.1, H1.2, H1.3, H1.4, H1.5

Comments
H 2. Does the wetland unit have the opportunity to provide habitat for many species?

<table>
<thead>
<tr>
<th>H 2.1 Buffers (see p. 80)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Choose the description that best represents condition of buffer of wetland unit. The highest scoring criterion that applies to the wetland is to be used in the rating. See text for definition of “undisturbed.”</td>
<td></td>
</tr>
<tr>
<td>— 100 m (330 ft) of relatively undisturbed vegetated areas, rocky areas, or open water > 95% of circumference. No structures are within the undisturbed part of buffer. (relatively undisturbed also means no-grazing, no landscaping, no daily human use) Points = 5</td>
<td></td>
</tr>
<tr>
<td>— 50 m (170 ft) of relatively undisturbed vegetated areas, rocky areas, or open water > 50% circumference.</td>
<td></td>
</tr>
<tr>
<td>— 100 m (330 ft) of relatively undisturbed vegetated areas, rocky areas, or open water > 95% circumference. Points = 4</td>
<td></td>
</tr>
<tr>
<td>— 50 m (170 ft) of relatively undisturbed vegetated areas, rocky areas, or open water > 95% circumference.</td>
<td></td>
</tr>
<tr>
<td>— 100 m (330 ft) of relatively undisturbed vegetated areas, rocky areas, or open water > 25% circumference. Points = 3</td>
<td></td>
</tr>
<tr>
<td>— 50 m (170 ft) of relatively undisturbed vegetated areas, rocky areas, or open water for > 50% circumference. Points = 3</td>
<td></td>
</tr>
</tbody>
</table>

If buffer does not meet any of the criteria above

— No paved areas (except paved trails) or buildings within 25 m (80 ft) of wetland > 95% circumference. Light to moderate grazing, or lawns are OK. **Points = 2**

— No paved areas or buildings within 50 m of wetland for > 50% circumference. Light to moderate grazing, or lawns are OK. **Points = 2**

— Heavy grazing in buffer. **Points = 1**

— Vegetated buffers are < 2 m wide (6.6 ft) for more than 95% of the circumference (e.g. tilled fields, paving, basalt bedrock extend to edge of wetland) **Points = 0**.

— Buffer does not meet any of the criteria above. **Points = 1**

Figure C. Aerial photo showing buffers

<table>
<thead>
<tr>
<th>H 2.2 Corridors and Connections (see p. 81)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>H 2.2.1 Is the wetland part of a relatively undisturbed and unbroken vegetated corridor (either riparian or upland) that is at least 150 ft wide, has at least 30% cover of shrubs, forest or native undisturbed prairie, that connects to estuaries, other wetlands or undisturbed uplands that are at least 250 acres in size? (dams in riparian corridors, heavily used gravel roads, paved roads, are considered breaks in the corridor)</td>
<td></td>
</tr>
<tr>
<td>YES = 4 points (go to H 2.3)</td>
<td></td>
</tr>
<tr>
<td>NO = go to H 2.2.2</td>
<td></td>
</tr>
</tbody>
</table>

H 2.2.2 Is the wetland part of a relatively undisturbed and unbroken vegetated corridor (either riparian or upland) that is at least 80 ft wide, has at least 30% cover of shrubs or forest, and connects to estuaries, other wetlands or undisturbed uplands that are at least 25 acres in size? OR a Lake-fringe wetland, if it does not have an undisturbed corridor as in the question above?

YES = 2 points (go to H 2.3) **NO = H 2.2.2**

H 2.2.3 Is the wetland:

— within 5 mi (8 km) of a brackish or salt water estuary OR
— within 3 mi of a large field or pasture (> 40 acres) OR
— within 1 mi of a lake greater than 20 acres?

YES = 1 point **NO = 0 points**

Total for page 10
H 2.3 Near or adjacent to other priority habitats listed by WDFW (see new and complete descriptions of WDFW priority habitats, and the counties in which they can be found, in the PHS report http://wdfw.wa.gov/hab/phslist.htm)

Which of the following priority habitats are within 330ft (100m) of the wetland unit? **NOTE:** the connections do not have to be relatively undisturbed.

- **Aspen Stands**: Pure or mixed stands of aspen greater than 0.4 ha (1 acre).
- **Biodiversity Areas and Corridors**: Areas of habitat that are relatively importantly to various species of native fish and wildlife (full descriptions in WDFW PHS report p. 152).
- **Herbaceous Balds**: Variable size patches of grass and forbs on shallow soils over bedrock.
- **Old-growth/Mature forests**: (Old-growth west of Cascade crest) Stands of at least 2 tree species, forming a multi-layered canopy with occasional small openings; with at least 20 trees/ha (8 trees/acre) > 81 cm (32 in) dbh or > 200 years of age. (Mature forests) Stands with average diameters exceeding 53 cm (21 in) dbh; crown cover may be less than 100%; crown cover may be less than 100%; decay, decadence, numbers of snags, and quantity of large downed material is generally less than that found in old-growth; 80 - 200 years old west of the Cascade crest.
- **Oregon white Oak**: Woodlands Stands of pure oak or oak/conifer associations where canopy coverage of the oak component is important (full descriptions in WDFW PHS report p. 158).
- **Riparian**: The area adjacent to aquatic systems with flowing water that contains elements of both aquatic and terrestrial ecosystems which mutually influence each other.
- **Westside Prairies**: Herbaceous, non-forested plant communities that can either take the form of a dry prairie or a wet prairie (full descriptions in WDFW PHS report p. 161).
- **Instream**: The combination of physical, biological, and chemical processes and conditions that interact to provide functional life history requirements for instream fish and wildlife resources.
- **Nearshore**: Relatively undisturbed nearshore habitats. These include Coastal Nearshore, Open Coast Nearshore, and Puget Sound Nearshore. (full descriptions of habitats and the definition of relatively undisturbed are in WDFW report: pp. 167-169 and glossary in Appendix A).
- **Caves**: A naturally occurring cavity, recess, void, or system of interconnected passages under the earth in soils, rock, ice, or other geological formations and is large enough to contain a human.
- **Cliffs**: Greater than 7.6 m (25 ft) high and occurring below 5000 ft.
- **Talus**: Homogenous areas of rock rubble ranging in average size 0.15 - 2.0 m (0.5 - 6.5 ft), composed of basalt, andesite, and/or sedimentary rock, including riprap slides and mine tailings. May be associated with cliffs.
- **Snags and Logs**: Trees are considered snags if they are dead or dying and exhibit sufficient decay characteristics to enable cavity excavation/use by wildlife. Priority snags have a diameter at breast height of > 51 cm (20 in) in western Washington and are > 2 m (6.5 ft) in height. Priority logs are > 30 cm (12 in) in diameter at the largest end, and > 6 m (20 ft) long.

<table>
<thead>
<tr>
<th>Habitats Found</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 or more</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>None</td>
<td>0</td>
</tr>
</tbody>
</table>

Note: All vegetated wetlands are by definition a priority habitat but are not included in this list. Nearby wetlands are addressed in question H 2.4)

Wetland Rating Form – western Washington 16 August 2004

version 2 Updated with new WDFW definitions Oct 2008
<table>
<thead>
<tr>
<th>H 2.4 Wetland Landscape (choose the one description of the landscape around the wetland that best fits) (see p. 84)</th>
</tr>
</thead>
<tbody>
<tr>
<td>There are at least 3 other wetlands within ½ mile, and the connections between them are relatively undisturbed (light grazing between wetlands OK, as is lake shore with some boating, but connections should NOT be bisected by paved roads, fill, fields, or other development.)</td>
</tr>
<tr>
<td>The wetland is Lake-fringe on a lake with little disturbance and there are 3 other lake-fringe wetlands within ½ mile</td>
</tr>
<tr>
<td>There are at least 3 other wetlands within ½ mile, BUT the connections between them are disturbed</td>
</tr>
<tr>
<td>The wetland is Lake-fringe on a lake with disturbance and there are 3 other lake-fringe wetland within ½ mile</td>
</tr>
<tr>
<td>There is at least 1 wetland within ½ mile.</td>
</tr>
<tr>
<td>There are no wetlands within ½ mile.</td>
</tr>
</tbody>
</table>

H 2 TOTAL Score - opportunity for providing habitat
Add the scores from H2.1, H2.2, H2.3, H2.4

| 13 |

TOTAL for H 1 from page 14

| 15 |

Total Score for Habitat Functions – add the points for H 1, H 2 and record the result on p. 1

| 28 |
CATEGORIZATION BASED ON SPECIAL CHARACTERISTICS

Please determine if the wetland meets the attributes described below and circle the appropriate answers and Category.

<table>
<thead>
<tr>
<th>Wetland Type</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC 1.0 Estuarine wetlands (see p. 86)</td>
<td></td>
</tr>
<tr>
<td>Does the wetland unit meet the following criteria for Estuarine wetlands?</td>
<td></td>
</tr>
<tr>
<td>— The dominant water regime is tidal,</td>
<td></td>
</tr>
<tr>
<td>— Vegetated, and</td>
<td></td>
</tr>
<tr>
<td>— With a salinity greater than 0.5 ppt</td>
<td></td>
</tr>
<tr>
<td>YES = Go to SC 1.1</td>
<td>NO</td>
</tr>
<tr>
<td>SC 1.1 Is the wetland unit within a National Wildlife Refuge, National Park, National Estuary Reserve, Natural Area Preserve, State Park or Educational, Environmental, or Scientific Reserve designated under WAC 332-30-151?</td>
<td></td>
</tr>
<tr>
<td>YES = Category I</td>
<td>NO go to SC 1.2</td>
</tr>
<tr>
<td>SC 1.2 Is the wetland unit at least 1 acre in size and meets at least two of the following three conditions?</td>
<td></td>
</tr>
<tr>
<td>YES = Category I</td>
<td></td>
</tr>
<tr>
<td>NO = Category II</td>
<td></td>
</tr>
<tr>
<td>— The wetland is relatively undisturbed (has no diking, ditching, filling, cultivation, grazing, and has less than 10% cover of non-native plant species. If the non-native Spartina spp. are the only species that cover more than 10% of the wetland, then the wetland should be given a dual rating (I/II). The area of Spartina would be rated a Category II while the relatively undisturbed upper marsh with native species would be a Category I. Do not, however, exclude the area of Spartina in determining the size threshold of 1 acre.</td>
<td></td>
</tr>
<tr>
<td>— At least ¾ of the landward edge of the wetland has a 100 ft buffer of shrub, forest, or un-grazed or un-mowed grassland.</td>
<td></td>
</tr>
<tr>
<td>X The wetland has at least 2 of the following features: tidal channels, depressions with open water, or contiguous freshwater wetlands.</td>
<td></td>
</tr>
</tbody>
</table>

$$320 \times 2442 = 25.5 \text{ acres}$$
SC 2.0 Natural Heritage Wetlands (see p. 87)

Natural Heritage wetlands have been identified by the Washington Natural Heritage Program/DNR as either high quality undisturbed wetlands or wetlands that support state Threatened, Endangered, or Sensitive plant species.

SC 2.1 Is the wetland unit being rated in a Section/Township/Range that contains a Natural Heritage wetland? *(this question is used to screen out most sites before you need to contact WNHP/DNR)*

S/T/R information from Appendix D _or_ accessed from WNHP/DNR web site _X_

YES _contact WNHP/DNR (see p. 79) and go to SC 2.2_ NO _X_

SC 2.2 Has DNR identified the wetland as a high quality undisturbed wetland or as or as a site with state threatened or endangered plant species?

YES = Category 1
NO = not a Heritage Wetland

SC 3.0 Bogs (see p. 87)

Does the wetland unit (or any part of the unit) meet both the criteria for soils and vegetation in bogs? *Use the key below to identify if the wetland is a bog. If you answer yes you will still need to rate the wetland based on its functions.*

1. **Does the unit have organic soil horizons (i.e. layers of organic soil), either peats or mucks, that compose 16 inches or more of the first 32 inches of the soil profile? (See Appendix B for a field key to identify organic soils)?**

 Yes - go to Q. 3
 No - go to Q. 2

2. **Does the unit have organic soils, either peats or mucks that are less than 16 inches deep over bedrock, or an impermeable hardpan such as clay or volcanic ash, or that are floating on a lake or pond?**

 Yes - go to Q. 3
 No - Is not a bog for purpose of rating

3. **Does the unit have more than 70% cover of mosses at ground level, AND other plants, if present, consist of the “bog” species listed in Table 3 as a significant component of the vegetation (more than 30% of the total shrub and herbaceous cover consists of species in Table 3)?**

 Yes - Is a bog for purpose of rating
 No - go to Q. 4

 NOTE: If you are uncertain about the extent of mosses in the understory you may substitute that criterion by measuring the pH of the water that seeps into a hole dug at least 16” deep. If the pH is less than 5.0 and the “bog” plant species in Table 3 are present, the wetland is a bog.

 1. **Is the unit forested (> 30% cover) with sitka spruce, subalpine fir, western red cedar, western hemlock, lodgepole pine, quaking aspen, Englemann’s spruce, or western white pine, WITH any of the species (or combination of species) on the bog species plant list in Table 3 as a significant component of the ground cover (> 30% coverage of the total shrub/herbaceous cover)?**

 YES = Category 1
 NO _X_ Is not a bog for purpose of rating

Wetland Rating Form -- western Washington
version 2 Updated with new WDFW definitions Oct. 2008

August 2004
SC 4.0 Forested Wetlands (see p. 90)

Does the wetland unit have at least 1 acre of forest that meet one of these criteria for the Department of Fish and Wildlife's forests as priority habitats? **If you answer yes you will still need to rate the wetland based on its functions.**

- **Old-growth forests**: (west of Cascade crest) Stands of at least two tree species, forming a multi-layered canopy with occasional small openings; with at least 8 trees/acre (20 trees/hectare) that are at least 200 years of age OR have a diameter at breast height (dbh) of 32 inches (81 cm) or more.

 NOTE: The criterion for dbh is based on measurements for upland forests. Two-hundred year old trees in wetlands will often have a smaller dbh because their growth rates are often slower. The DFW criterion is and “OR” so old-growth forests do not necessarily have to have trees of this diameter.

- **Mature forests**: (west of the Cascade Crest) Stands where the largest trees are 80 – 200 years old OR have average diameters (dbh) exceeding 21 inches (53 cm); crown cover may be less than 100%; decay, decadence, numbers of snags, and quantity of large downed material is generally less than that found in old-growth.

 YES = Category I
 NO = not a forested wetland with special characteristics

SC 5.0 Wetlands in Coastal Lagoons (see p. 91)

Does the wetland meet all of the following criteria of a wetland in a coastal lagoon?

- The wetland lies in a depression adjacent to marine waters that is wholly or partially separated from marine waters by sandbanks, gravel banks, shingle, or, less frequently, rocks

- The lagoon in which the wetland is located contains surface water that is saline or brackish (> 0.5 ppt) during most of the year in at least a portion of the lagoon (needs to be measured near the bottom)

 YES = Go to SC 5.1
 NO = not a wetland in a coastal lagoon

SC 5.1 Does the wetland meets all of the following three conditions?

- The wetland is relatively undisturbed (has no diking, ditching, filling, cultivation, grazing), and has less than 20% cover of invasive plant species (see list of invasive species on p. 74).

- At least ⅓ of the landward edge of the wetland has a 100 ft buffer of shrub, forest, or un-grazed or un-mowed grassland.

- The wetland is larger than 1/10 acre (4350 square feet)

 YES = Category I
 NO = Category II
SC 6.0 Interdunal Wetlands (see p. 93)
Is the wetland unit west of the 1889 line (also called the Western Boundary of Upland Ownership or WBUO)?
 YES - go to SC 6.1
 NO - not an interdunal wetland for rating
 If you answer yes you will still need to rate the wetland based on its functions.
In practical terms that means the following geographic areas:
 • Long Beach Peninsula- lands west of SR 103
 • Grayland-Westport- lands west of SR 105
 • Ocean Shores-Copalis- lands west of SR 115 and SR 109
SC 6.1 Is the wetland one acre or larger, or is it in a mosaic of wetlands that is once acre or larger?
 YES - Category II
 NO - go to SC 6.2
SC 6.2 Is the unit between 0.1 and 1 acre, or is it in a mosaic of wetlands that is between 0.1 and 1 acre?
 YES = Category III